Звуковые волны конспект кратко

Звук

Звуковые волны конспект кратко

Перед тем, как приступить к рассмотрению темы, дадим определение такому явлению, как звук.

Определение 1

Звук или звуковые волны – это волны, которые способно воспринять человеческое ухо.

При этом звуковые частоты имеют диапазон: примерно от 20 Гц до 20 кГц.

Определение 2

Инфразвук – звуковые волны, имеющие частоту менее 20 Гц.

Ультразвук – волны звука, имеющие частоту более 20 кГц.

Волнам звукового диапазона свойственно распространяться как в газе, так и в жидкости (продольные волны), и в твердом теле (продольные и поперечные волны). Особенно интересно для науки заниматься изучением распространения звуковых волн в газообразной среде, что по сути есть среда нашего обитания.

Определение 3

Акустика – это направление физики, занимающееся изучением звуковых явлений.

Когда звук получает распространение в газе, атомы и молекулы испытывают колебания вдоль направления распространения волны, следствием чего становится изменение локальной плотности ρ и давления p.

Замечание 1

Звуковые волны в газе зачастую называют волнами плотности или волнами давления.

В случае простых гармонических звуковых волн, получающих распространение вдоль оси OX, изменение давления p(x, t) имеет зависимость от координаты x и времени t, которая записывается так:

p(x,t)=p0cosωt±kx.

В аргументе косинуса мы видим два противоположных знака, что имеет отношение к двум направлениям распространения волны. Запишем выражение, которое покажет соотношение таких величин, как круговая частота ω, волновое число k, длина волны λ, скорость звука υ (соотношение будет таким же, как применимо для поперечных волн в струне или резиновом жгуте): 

υ=λT=ωk; k=2πλ; ω=2πf=2πT.

Одной из ключевых характеристик звука является скорость распространения.

Определение 4

Скорость распространения – величина, описывающая звуковую волну, задаваемая инертными и упругими свойствами среды и определяемая для продольных волн в любой однородной среде при помощи формулы:

υ=Bρ.

В указанной формуле B является модулем всестороннего сжатия, ρ – средней плотностью среды.

Формула Лапласа

Первые попытки рассчитать значение скорости звука предпринял Ньютон, предположив равенство упругости воздуха атмосферному давлению pатм.

В таком случае значение скорости звука в воздушной среде – менее 300 м/с, в то время как истинная скорость звука при нормальных условиях (температура 0 °С и давление 1 атм) равна 331,5 м/с, а скорость звука при температуре 20 °С и давлении 1 атм составит 343 м/с.

Лишь по прошествии более ста лет было показано, почему предположение Ньютона не выполняется. Французский физик П.

Лаплас указал, что ньютоновское видение равносильно предположению о быстром выравнивании температуры между областями разрежения и сжатия, и невыполнение его связано с плохой теплопроводностью воздуха и малым периодом колебаний в звуковой волне.

В действительности между областями разрежения и сжатия газа появляется разность температур, существенным образом влияющая на упругие свойства. Лаплас, в свою очередь, выдвинул предположение, что сжатие и разрежение газа в звуковой волне происходят в соответствии с адиабатическим законом: в отсутствии влияния теплопроводности. В 1816 году физик вывел формулу, предназначенную для расчета скорости звуковой волны в воздухе и получившей название формулы Лапласа.

Определение 5

Формула Лапласа для определения скорости звука имеет запись:

υ=γpρ.

Где p является значением среднего давления в газе, ρ – средней плотности, а γ есть некоторая константа, находящаяся в зависимости от свойств газа.

В нормальных условиях скорость звука, рассчитанная по формуле Лапласа, равна υ=332 м/с.

В термодинамике имеется доказательство, что константа γ представляет собой отношение теплоемкостей при постоянном давлении Cp и постоянном объеме CV .

Формула Лапласа может быть записана несколько иначе, если использовать уравнение состояния идеального газа. Таким образом, окончательный вид формулы для определения скорости звука будет такой:

υ=γRTM.

В данной формуле T – абсолютная температура, M – молярная масса,
R=8,314 Дж/моль·К – универсальная газовая постоянная. Скорость звука находится в сильной зависимости от свойств газа: скорость звука тем больше, чем легче газ, в котором звуковая волна получает распространение.

Для наглядности приведем некоторые примеры.

Пример 1

Когда звук распространяется в воздушной среде (M=29·10–3 кг/моль) при нормальных условиях: υ=331,5 м/с;

Пример 2

Когда звук распространяется в гелии (M=4·10–3 кг/моль): υ=970 м/с;

Пример 3

Когда звук распространяется в водороде (M=2·10–3 кг/моль): υ=1270 м/с.

В жидкостях и твердых телах скорость звуковых волн еще больше. В воде, например, υ=1480 м/с (при 20 °С), в стали υ=5–6 км/с.

Характеристики звуковых волн

Помимо скорости распространения звук имеет и другие характеристики, связанные с восприятием его человеческими органами слуха.

Громкость звука

Рассуждая о том, как человеческое ухо воспринимает звук, в первую очередь мы говорим об уровне громкости, который зависит от потока энергии или интенсивности звуковой волны. А то, как воздействует звуковая волна на барабанную перепонку, зависит от звукового давления.

Определение 6

Звуковое давление – это амплитудаp0 колебаний давления в волне

Природа отлично потрудилась, создавая такое совершенное устройство, как человеческое ухо: оно способно воспринимать звуки в обширнейшем диапазоне интенсивностей. Мы имеем возможность слышать как слабый писк комара, так и грохот вулкана. 

Определение 7

Порог слышимости – минимальное значение величины звукового давления, при котором звук этой частоты еще воспринимается человеческим ухом.

Болевой порог – это верхняя граница диапазона слышимости человека; та величина звукового давления, при котором звук вызывает в человеческом ухе ощущение боли.

Порог слышимости представляет собой значение p0 около 10–10 атм, т. е.

 10–5 Па: такой слабый звук характеризуется колебанием молекул воздуха в волне звука с амплитудой всего лишь 10–7 см! Болевой же порог соответствует значению p0 порядка 10–4 атм или 10 Па. Т.е.

, человеческое ухо способно к восприятию волн, в которых звуковое давление изменяется в миллион раз. Поскольку интенсивность звука пропорциональна квадрату звукового давления, диапазон интенсивностей оказывается порядка 1012!

Человеческое ухо, восприимчивое к звукам такого огромного диапазона интенсивности, допустимо сравнить с прибором, которым возможно измерить как диаметр атома, так и размеры футбольного поля.

Замечание 2

Для общей информированности заметим, что обычным разговорам людей в комнате соответствует интенсивность звука, примерно в 106 раз превышающая порог слышимости, а интенсивность звука на рок-концерте находится очень близко к болевому порогу.

Высота звука

Высота звуковой волны – еще одна характеристика звука, влияющая на слуховое восприятие. Человеческие ухо воспринимает колебания в гармонической звуковой волне как музыкальный тон.

Определение 8

Высокий тон – это звуки с колебаниями высокой частоты.

Низкий тон – это звуки с колебаниями низкой частоты.

Опиши задание

Звуки, которые издают музыкальные инструменты, а также звуки голоса человека значимо отличаются друг от друга по высоте тона и по диапазону частот.

К примеру, диапазон наиболее низкого мужского голоса – баса – находится в пределах примерно от
80 до 400 Гц, а диапазон высокого женского голоса – сопрано – от 250 до 1050 Гц.

Определение 9

Октава – это диапазон колебаний звука, который соответствует изменению частоты колебаний в 2 раза.

Скрипка, к примеру, звучит в диапазоне примерно трех с половиной октав (196–2340 Гц),
а пианино – семи с лишним октав (27,5–4186 Гц).

Говоря о частоте звука, который извлекается при помощи струн любого струнного музыкального инструмента, будем иметь в виду частоту f1 основного тона. Однако колебания струн содержат также гармоники, частоты fn которых отвечают соотношению: 

fn=nf1, (n=1, 2, 3,…).

Таким образом, звучащая струна способна излучать целый спектр волн с кратными частотами. Амплитуды An этих волн имеют зависимость от способа возбуждения струны, будь то смычок или молоточек. Эти амплитуды необходимы для придания музыкальной окраски звуку (тембру).

Аналогичный процесс мы наблюдаем, когда звучат духовые музыкальные инструменте. Трубы духовых инструментов служат акустическими резонаторами – акустическими колебательными системами, имеющими способность возбуждаться (резонировать) от звуковых волн определенных частот.

Определенные же условия способствуют возникновению внутри трубы стоячей звуковой волны. Рисунок 2.7.1 демонстрирует несколько видов стоячих волн (мод) в органной трубе, закрытой с одного конца и открытой с другого.

Звучание духовых инструментов, так же, как и струнных, состоит из целого спектра волн с кратными частотами.

Рисунок 2.7.1. Стоячие волны в трубе органа (закрыта лишь с одной стороны). Стрелки указывают направления движения частиц воздуха за один полупериод колебаний.

Музыкальные инструменты необходимо периодически настраивать.

Определение 10

Камертон – устройство для настройки музыкальных инструментов, состоящее из настроенных в резонанс деревянного акустического резонатора и соединенной с ним металлической вилки.

Удар молоточка по вилке вызывает возбуждение всей системы камертона с последующим звучанием чистого музыкального тона.

Гортань певца – по сути тоже акустический резонатор. Рисунок 2.7.2 демонстрирует спектры звуковых волн, издаваемых камертоном, струной пианино и низким женским голосом (альтом), звучащими на одной и той же ноте.

Рисунок 2.7.2. Относительные интенсивности гармоник в спектре волну звука при звучании камертона (1), пианино (2) и низкого женского голоса (альт) (3) на ноте «ля» контроктавы (f1=220 Гц). По оси ординат отложены относительные интенсивности II0 .

Звуковые волны, чьи частотные спектры показаны на рисунке 2.7.2, имеют одну и ту же высоту, но различные тембры.

Биения

Разберем также такое явление, как биения.

Определение 11

Биение – это явление, возникающее, когда две гармонические волны с близкими, но все же имеющими отличия частотами, накладываются друг на друга.

Биения сопровождают, к примеру, одновременное звучание двух струн, имеющих настройки практически одинаковой частоты. Человеческий орган слуха воспринимает биения как гармонический тон с громкостью, периодически изменяющейся во времени. Запишем выражения, показывающие закономерность изменения звуковых давлений p1 и p2, которые осуществляют воздействие на ухо: 

p1=A0cos ω1t и p2=A0cos ω2t.

Для удобства примем, что амплитуды колебаний звуковых давлений являются одинаковыми и равны p0=A00.

Согласно принципу суперпозиции полное давление, которое вызывается обеими волнами в каждый момент времени, есть совокупность звуковых давлений, задаваемых каждой волной в тот же момент времени. Запишем выражение, показывающее суммарное воздействие волн, используя тригонометрические преобразования:

p=p1+p2=2A0cosω1-ω22tcosω1+ω22t=2A0cos12∆ωtcosωсрt,

где ∆ω=ω1-ω2, аωср=ω1+ω22.

Рисунок 2.7.3(1) отображает, каким образом давления p1 и p2 зависимы от времени t. В момент времени t=0 оба колебания находятся в фазе, и их амплитуды суммируются.

Поскольку частоты колебаний имеют хоть и небольшие, но отличия, через некоторое время t1 колебания войдут в противофазу. В этот момент суммарная амплитуда станет равна нулю: колебания взаимно «погасятся».

К моменту времени t2=2t1 колебания вновь окажутся в фазе и т. д. (рисунок 2.7.3(2)).

Определение 12

Период биений Тб – это минимальное значение интервала между двумя моментами времени, которым соответствуют максимальная и минимальная амплитуда колебаний.

Формула, которая определяет медленно изменяющуюся амплитуду A результирующего колебания, имеет запись:

A=2A0cos12∆ωt.

Период Тб изменения амплитуды равен 2πΔω. Мы можем это продемонстрировать, приняв следующее предположение: периоды колебаний давлений в звуковых волнах T1 и T2 являются такими, что T1ω2). За период биений Тб наблюдается некоторое число n полных циклов колебаний первой волны и (n–1) циклов колебаний второй волны: 

Tб=nT1=(n-1)T2.

Отсюда следует:

Tб=T1T2T2-T1=2πω1-ω2=2π∆ω или fб=1Tб=1T1-1T2=f1-f2=∆f.

fб есть частота биений, определяемая как разность частот Δf двух звуковых волн, которые воспринимаются ухом одновременно.

Органы слуха человека способны к восприятию звуковых биений до частот 5–10 Гц. Прослушивание биений – это важный элемент техники настройки музыкальных инструментов.

Рисунок 2.7.3. Биения, возникающие, когда накладываются две звуковые волны с близкими частотами.

Рисунок 2.7.4. Модель явления биений.

Источник: https://Zaochnik.com/spravochnik/fizika/volny/zvuk/

Механические колебания и волны – FIZI4KA

Звуковые волны конспект кратко

ЕГЭ 2018 по физике ›

Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.

Отличительными признаками колебательного движения являются:

  • повторяемость движения;
  • возвратность движения.

Для существования механических колебаний необходимо:

  • наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
  • наличие малого трения в системе.

Механические волны – это процесс распространения колебаний в упругой среде.

Виды волн

  • Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.

Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.

  • Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.

Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.

Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

где ​\( x \)​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​\( A \)​ – амплитуда колебаний; ​\( \omega t+\varphi_0 \)​ – фаза колебаний; ​\( \omega \)​ – циклическая частота; ​\( \varphi_0 \)​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:

где ​\( v \)​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:

где ​\( a \)​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

где ​\( F \)​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:

Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​\( W_k \)​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:

При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:

  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ​\( A\, (X_{max}) \)​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ​\( \varphi \)​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.Фаза гармонических колебаний в процессе колебаний изменяется.

​\( \varphi_0 \)​ – начальная фаза колебаний.

Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания.
Обозначение – ​\( T \)​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Частота колебаний

Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ​\( u \)​, единицы времени – с-1 или Гц (Герц).

1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:

Период и частота колебаний – взаимно обратные величины:

Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ​\( \omega \)​, единицы измерения – рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.

Период колебаний математического маятника:

Частота колебаний математического маятника:

Циклическая частота колебаний математического маятника:

Максимальное значение скорости колебаний математического маятника:

Максимальное значение ускорения колебаний математического маятника:

Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:

Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:

Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:

Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​\( h \)​, определяется по формуле:

где ​\( l \)​ – длина нити, ​\( \alpha \)​ – угол отклонения от вертикали.

Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.

Период колебаний пружинного маятника:

Частота колебаний пружинного маятника:

Циклическая частота колебаний пружинного маятника:

Максимальное значение скорости колебаний пружинного маятника:

Максимальное значение ускорения колебаний пружинного маятника:

Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:

Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Резонанс

Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.

Условие резонанса:

​\( v_0 \)​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.

Длина волны

Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ​\( \lambda \)​, единицы измерения – м.

Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.

Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​\( u \)​ < 16 Гц);
  • звуковой диапазон (16 Гц < \( u \) < 20 000 Гц);
  • ультразвук (\( u \) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

  • от упругих свойств среды:

в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;

в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.

Характеристики звуковой волны

  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.

Основные формулы по теме «Механические колебания и волны»

Источник: https://fizi4ka.ru/egje-2018-po-fizike/mehanicheskie-kolebanija-i-volny-2.html

Звуковые волны, виды, длина волны и скорость звука

Звуковые волны конспект кратко

Сегодня мы продолжим изучать звук и разберёмся что такое звуковые волны, какие бывают их виды, что такое длина волны и какая скорость у звука.

Звуковые волны

Звук создаётся с помощью механических колебаний ого аппарата или различных элементов музыкальных инструментов. Подробнее о механических колебаниях мы говорили вот в этой статье (читать).

Распространяется звук посредством передачи энергии механических колебаний частицам среды в виде звуковых волн. Как это происходит написано вот здесь.

Виды звуковых волн

Звуковые волны делятся на продольные. Это когда направление движения частиц совпадает с направлением распространения энергии механических колебаний в упругой среде. И на поперечные. Это когда направление движения частиц перпендикулярно распространению возмущения.

В газах (к ним относится и воздух) распространяются только продольные волны, в твердых могут быть оба вида.

Скорость звуковой волны

Если сделать движение рукой туда и обратно, то с воздухом ничего особенного не произойдет, кроме того, что его частицы сместятся в пространстве. Если бы мы могли махать рукой сто раз в секунду, то произошло бы совсем другое. У воздуха не было бы времени освобождать путь движущейся руки. И он стал бы сжиматься, когда рука движется вперёд и разрежаться, когда она возвращалась.

Благодаря упругости в процессе таких колебаний при движении поверхности тела вперёд каждая частица воздуха толкает находящуюся впереди частицу, та следующую и т. д. При обратном движении поверхности тела сжатие сменяется разряжением, за которым опять следует сжатие.

Эти волны сжатия и разряжения передаются от одного участка к другому с определённой скоростью.

В упругой среде они распространяются со скоростью, зависящей от материала среды и от того, насколько близко расположены друг к другу его атомы и молекулы.

В газах плотность не влияет на скорость. Например, в воздухе важным параметром является его температура. Но об этом ещё поговорим.

Отметим, что скорость звука в воздухе абсолютно не зависит от числа колебаний поверхности тела. Напомним, что число колебаний в секунду (точнее один период) называется Герц (Гц).

Также скорость смещения частиц и скорость звуковой волны это совершенно разные величины. Скорость частиц зависит от частоты и амплитуды звукового сигнала.

А скорость звука только от свойств среды (температура, плотность, упругость).

Формулы

Зависимость скорости звуковой волны от свойств среды, где она распространяется, рассматривается по формуле:

E — коэффициент упругости среды, определяет силу взаимодействия частиц друг с другом; p = m/V (кг/м³) — плотность среды. У твердых тел упругость больше, чем у жидкости и газа. Поэтому соотношение скоростей звука будет таким:

Скорость звука в газах может быть представлена следующей формулой:

γ = cp/сv — отношение удельной теплоёмкости при постоянном давлении к удельной теплоёмкости при постоянном объёме.

P атм — атмосферное давление, которое связано с температурой газообразной среды.

Главное, что нужно понять из этой формулы, это то, что в газообразной среде скорость звука сильно зависит от температуры (чем горячее, тем быстрее двигаются молекулы, имеет большую энергию и быстрее передают механическое возбуждение)

В воздухе скорость звука (при нормальном атмосферном давлении) приближенно можно представить так:

C = (331 + 0,6 T °) м/c

T ° — градусы Цельсия.

Например, при температуре 20 °C скорость звука равна 343 м/с

C = (331 + 0,6 × 20) = 343

При 0 °C, скорость звука равна 331 м/с, при — 20 °C = 319 м/с.

Такая зависимость особенно важна для духовых музыкальных инструментов при их настройке. Поэтому их нужно прогревать перед исполнением.

Ещё важно, что связь звуковых колебаний с размерами источника звука, которые не изменяются с температурой, не означают постоянства частоты, так как последняя зависит от скорости звука, растущей с повышением температуры. Струнные в этом случае можно подстроить.

А вот вибрирующий столб во многих духовых инструментах подстроить нельзя. Ведь колебания возникают в воздушной полости инструмента, а их частота зависит от размеров полости и скорости истечения воздушных масс из неё.

Например, у флейты высота звука увеличивается на полтона при повышении температуры на 15 °C.

Если переводить в км/ч, то 343 м/с, это 1235 км/ч. Это довольно быстро для человека или автомобиля. Но мало по сравнению со скоростью света 300 000 км/c.

Заканчивая о скорости звука, отметим, что скорость звука не зависит от частоты. Так как в воздушной среде отсутствует дисперсия — зависимость скорости распространения звука от частоты. Если бы в воздухе была бы дисперсия, мы не смогли бы слушать музыку в зале: все звуки, исполненные одновременно, приходили бы к слушателю в разное время.

Формула для расчёта длины волны

А формула вычислений такая:

λ — длина волны, c — скорость, f — частота.

Конечно, эти расчеты являются приближенными. Так как мы уже знаем, что скорость звука в воздухе зависит от температуры, давления. Но на практике, чтобы рассчитать толщину звукопоглотителя для ослабления звука определённого диапазона частот или для оценки размера мембраны микрофона, этого вполне достаточно.

Музыкальные ноты имеет определённые частоты, значит и определённую длину волн. Например, у фортепиано верхняя октава создаёт звуки в районе 2 см, а нижняя около 10 м. Но дека фортепиано не очень эффективно генерирует эти звуки, в отличии, например, от органа. Почему?

Вернёмся к нашей руке. Допустим мы всё-таки наделены сверх способностями и можем махать рукой 100 раз в секунду = 100 Гц. Этот источник звука был бы всё равно несовершенен, так как часть воздуха огибала его сбоку.

Чтобы этого не было, источник для таких низких частот должен быть гораздо большего размера (например, дека фортепиано более эффективна, поскольку потери на её краях невелики, а органа ещё эффективнее). Если же вибратор колеблется очень быстро воздух не успевает растекаться по сторонам.

Поэтому для очень высоких частот даже малые поверхности могут быть эффективными излучателями звука.

Спасибо, что читаете New Style Sound. Подписывайтесь и делитесь с друзьями.

Tweet Подписаться Share Share Share Share Share

Источник: https://nssound.ru/o-zvuke-i-zvukovykh-signalakh/zvukovye-volny-vidy-dlina-volny-i-skorost-zvuka/

Конспект

Звуковые волны конспект кратко

Раздел ОГЭ по физике: 1.23. Механические колебания. Амплитуда, период и частота колебаний. Формула, связывающая частоту и период колебаний. Механические волны.

Продольные и поперечные волны. Длина волны и скорость распространения волны. Звук. Громкость и высота звука. Скорость распространения звука. Отражение и преломление звуковой волны на границе двух сред.

Инфразвук и ультразвук.

Движение, при котором состояния движущегося тела с течением времени повторяются, причём тело проходит через положение своего устойчивого равновесия поочерёдно в противоположных направлениях, называется механическим колебанием.

Условием возникновения колебания является наличие в системе возвращающей силы, всегда направленной к положению устойчивого равновесия. Каждый законченный цикл колебательного движения, после которого оно вновь повторяется, называется полным колебанием.

Смещением х называется отклонение колеблющейся точки от положения равновесия в данный момент времени.

Амплитудой колебанийхm называется модуль наибольшего смещения тела от положения равновесия при колебательном движении.

Периодом колебания Т называется время, за которое совершается одно полное колебание: Т = t/N.

Величину, равную числу колебаний, совершаемых за единицу времени, называют частотой колебаний 

Механическое колебание, при котором координата тела меняется по закону синуса или косинуса, называется гармоническим колебанием.

Математическим маятником называют материальную точку, подвешенную на тонкой нерастяжимой нити. Маленький металлический шарик, подвешенный на длинной нити, можно условно считать математическим маятником.

При колебаниях математического маятника (в отсутствие сил трения) выполняется закон сохранения механической энергии и периодически происходит переход потенциальной энергии в кинетическую и обратно.

В положении максимального отклонения от положения равновесия потенциальная энергия маятника максимальна, а кинетическая равна нулю.

При приближении к положению равновесия потенциальная энергия уменьшается, а кинетическая увеличивается, достигая максимального значения в положении равновесия, в котором потенциальная становится равной нулю: Wполн = Wп + Wк = const Eполн = Eк max = Еп maх.

 Затухающими называются колебания, амплитуда которых уменьшается с течением времени. Затухание свободных механических гармонических колебаний связано с уменьшением механической энергии колебательной системы за счёт работы сил сопротивления (трения).

Механические волны. Звук

Если в упругой среде (газ, жидкость или твёрдое тело) имеется источник колебаний, то в ней с течением времени происходит процесс распространения колебаний, этот процесс называется волной.

Волны, распространяющиеся в упругой среде, называются механическими волнами. В волне осуществляется перенос энергии колебательного движения без переноса вещества (массы) среды, в которой распространяется волна.

Периодом Т волны является период колебаний точек среды при распространении волны.

Длиной волны λ называется расстояние, на которое распространяется волна за один период колебаний: λ = ʋT; ʋ = λv.

Продольными волнами называются волны, в которых направление колебаний частиц происходит в направлении распространения волны. Продольные механические волны могут распространяться в твёрдых, в жидких и в газообразных средах.

Поперечными называются волны, в которых направление колебаний частиц происходит перпендикулярно направлению распространения волны. Поперечные механические волны могут распространяться только в твёрдых телах и на свободной поверхности жидкости.

Звуковыми волнами называются механические волны, вызывающие у человека ощущение звука: ʋзв = (16 ÷ 20 000) Гц.

Характеристики звука

Громкость звука определяется амплитудой колебаний.

Высота тона определяется частотой колебаний.

Скорость звука зависит от плотности среды. Скорость звука в твёрдых телах больше, чем в жидкостях, а в жидкостях больше, чем в газах. Скорость звука увеличивается с ростом температуры среды.

В случае, когда отражающая поверхность перпендикулярна распространению волны, звуковая волна после отражения возвращается обратно к источнику звука. Такой случай отражения называется эхом.

В гидролокации эхо используется для определения глубин, расстояний до преград и других судов.

Конспект урока «Механические колебания и механические волны. Звук».

Следующая тема: «МКТ. Агрегатные состояния вещества».

Источник: https://uchitel.pro/%D0%BC%D0%B5%D1%85%D0%B0%D0%BD%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D0%B5-%D0%BA%D0%BE%D0%BB%D0%B5%D0%B1%D0%B0%D0%BD%D0%B8%D1%8F-%D0%B8-%D0%B2%D0%BE%D0%BB%D0%BD%D1%8B-%D0%B7%D0%B2%D1%83%D0%BA/

Звуковые волны – свойства, характеристики и примеры применения в физике

Звуковые волны конспект кратко

В общем случае звуковые волны физика рассматривает как распространение возмущений давления в упругих средах. Человеческое ухо улавливает аномалию, воспринимая звук.

Изучающая свойства явления наука называется акустикой. От греческого ἀκούω (слышать). Имеются в виду небольшие изменения параметров в отличие от физики ударных волн.

Источник звука

Под источником звука понимают вещь, спровоцировавшую волну. Например, динамик или музыкальный инструмент.

В громкоговорителе для извлечения шума используется подвижная мембрана. В духовых инструментах – движение воздуха по внутренним ходам различной геометрии.

Из струнных звук извлекают при помощи трения смычка или при помощи щипков, ударов. Человек выдает речь, вокал, при помощи ых связок.

Громкость

Зависит от перемещаемой волной энергии. Замеряют в Вт/м2. Но интенсивность принято измерять в децибелах.

Существует масса приложений для компьютеров, смартфонов. Специалисты вооружаются специализированными устройствами.

Бел – десятичный логарифм отношения текущего уровня интенсивности в фоновому, пороговому. Осталось умножить на 10 (поскольку децибел).

Вот примеры уровня шума для разных источников.

Высота и тембр звука

Считается, что человеческое ухо воспринимает с разным успехом частоты диапазона 20…20 000 Гц. Оптимальными для слуха является интервал 1 000…5 000 Гц.

Высота определяется частотой. В связанной с музыкальными инструментами акустике измеряется также в мелах.

В музыкальных колонках в зависимости от частот звук может разделяться на полосы (НЧ, СЧ, ВЧ). На каждый громкоговоритель поступает соответственно отфильтрованный звук.

Рассуждения корректны, если имеем гармоничные колебания (синусоида), определенный тон. Примером такого звучания может служить камертон. Реальные инструменты дают дополнительные гармоники (обертона), образующие тембр.

Так выглядит звук от разных источников на одной ноте.

Звуковые явления

Звук обладает ярко выраженными волновыми свойствами:

1. Интерференция или сложение. В зависимости от условий волны могут взаимно усиливаться или ослабляться.

При проведении крупных концертных мероприятий учитывается возможные «деформации» звука в некоторых участках помещения. Эффект связан с обильным отражением (рефракцией) волн от стен, потолка, пола. Особенно коварно поведение линейных массивов.

Рота бойцов разрушит мост, идя по нему «в ногу». Конструкции не выдерживает наступающего резонанса.

2. Дифракция. Огибание препятствия, если длина волны существенно больше.

3.Замеренная частота источника увеличивается в процессе сближения с последним (эффект Доплера).

Применение звуковых волн

Помимо ценности общения друг с другом, звук дает возможность наслаждаться музыкой и обогащать свое представление об окружающем мире. Кроме слышимого спектра существуют инфра- и ультразвук. Ниже и выше границ слышимости соответственно.

УЗИ (ультразвуковое исследование) позволяет «увидеть» внутренности пациента без скальпеля и небезопасного рентгеновского аппарата. Эхолокатор поставляет морякам информацию о глубинах и рельефе дна. Офицер-гидроакустик обнаружит спрятавшуюся подводную лодку. Характер отражения ультразвука поможет обнаружить скрытый дефект в ответственной детали.

Слабо затухающий в средах инфразвук предупредит о стихийном бедствии. Регистрирующие приборы обнаруживают и локализуют сотрясения почвы и скальных пород. Это важно для изучения и предсказания землетрясений. Таким же образом обнаруживаются запрещенные испытания ядерного оружия. Предупрежден – значит вооружен.

Источник: https://nauka.club/fizika/zvukovye-volny.html

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: