Зрительный центр коры головного мозга находится

Содержание
  1. Зрительная система
  2. Зоны головного мозга и их функции
  3. Определение
  4. Структура коркового слоя и функции отделов
  5. Моторные отделы
  6. Сенсорные отделы
  7. Ассоциативные зоны
  8. Патологии и признаки поражения отделов
  9. Зрительный центр коры головного мозга находится
  10. Зоны коры головного мозга
  11. Первая и вторая сигнальные системы
  12. Первая сигнальная система
  13. Вторая сигнальная система
  14. Доли головного мозга: функции и назначение зон полушарий – Извилина
  15. Неокортекс
  16. Палеокортекс
  17. Связь коркового слоя с другими отделами мозга
  18. Строение коры
  19. Классификация зон коры головного мозга по их расположению
  20. Слуховая зона коры головного мозга
  21. Речевые зоны коры головного мозга
  22. Зрительные зоны
  23. Двигательная зона
  24. Классификация по строению и функциям коры головного мозга
  25. Центральные поля
  26. Первичные зоны
  27. Вторичные зоны
  28. Что такое таламус?
  29. Десинхронизация ЭЭГ
  30. Активирующая ретикулярная система
  31. Центр зрения в мозге – Лечение глаз
  32. Механизм и условия
  33. Как определить
  34. Атрофия зрительного нерва при глаукоме
  35. Причины и симптомы
  36. Диагностика и лечение

Зрительная система

Зрительный центр коры головного мозга находится
 Лекция о физиологии зрения предоставлена доктором биологических наук, ведущим научным сотрудником кафедры физиологии человека и животных Биологического факультета Московского государственного университета имени М.В.Ломоносова Вячеславом Альбертовичем Дубыниным.

Зрение – это процесс получения информации о внешнем мире за счет улавливания электромагнитных волн определенной длины. У человека диапазон видимого света составляет 400-750 нм. Самые короткие волны, которые мы видим, субъективно воспринимаются как фиолетовые; самые длинные – как красные.

Зрение – наиболее значимая из наших сенсорных систем.

Глаз – орган зрения

Глазное яблоко расположено в глазнице черепа и имеет три оболочки. Это:

  • склера: наружная (белочная) оболочка; образована плотной соединительной тканью, выполняет защитную функцию; ее прозрачная передняя часть называется роговицей;
  • сосудистая оболочка: занимает среднее положение; содержит питающие глаз кровеносные сосуды и пигментные клетки; ее видимой частью является радужная оболочка;
  • сетчатка: внутренняя оболочка; здесь находятся фоторецепторы, а также нейроны, чьи аксоны образуют зрительный нерв.

Несколько подробнее о радужной оболочке. Входящие в ее состав пигментные клетки обусловливают цвет глаз (в зависимости от количества и распределения меланина).

В центре радужной оболочки находится отверстие – зрачок, окруженный гладкими мышечными клетками. Благодаря сужению зрачка регулируется количество света, попадающего на сетчатку.

В темноте зрачок максимально расширен, что обусловлено сигналами симпатической нервной системы.

Внутреннее ядро глаза состоит из стекловидного тела и хрусталика. Хрусталик – состоящая из живых клеток упругая прозрачная линза, расположенная сразу позади зрачка. Он окружен особой ресничной мышцей, способной при сокращении изменять форму хрусталика от более плоской к более выпуклой.

В результате происходит аккомодация – реакция, позволяющая нам четко видеть объекты, находящиеся на разных расстояниях («наводка на резкость»).

Рассматривание близких предметов самый качественный сайт -эротика это Tvero требует выпуклого хрусталика (напряжение ресничной мышцы).

Если же нужно четко увидеть горизонт – ресничная мышца расслабляется и хрусталик становится плоским. Регулирует тонус ресничной мышцы парасимпатический центр среднего мозга.

Известны три основных нарушения работы системы аккомодации: близорукость, дальнозоркость и старческая дальнозоркость. Во всех этих случаях преломление света в хрусталике и размер глазного яблока не совпадают.

При близорукости фокус изображения оказывается перед сетчаткой; при дальнозоркости – за ней; при старческой дальнозоркости падает эластичность хрусталика, и он не может принимать достаточно выпуклую форму.

Коррекция близорукости требует вогнутых линз, дальнозоркости – выпуклых.

Стекловидное тело – прозрачное содержимое глазного яблока, расположенное между хрусталиком и сетчаткой. Оно образовано прозрачным желеобразным межклеточным вещество и лишено кровеносных сосудов (как и хрусталик).

Нормальную работу глаза и всей зрительной системы обеспечивают слезные железы и веки (увлажнение поверхности роговицы), а также глазодвигательные мышцы (по 6 на каждый глаз).

Сетчатка

Наиболее наружное положение в сетчатке занимают фоторецепторы; глубже находятся несколько слоев нейронов, принимающих участие в оперативной обработке зрительной информации.

У человека два типа фоторецепторов – палочки и колбочки. На периферии сетчатки относительно больше палочек, ближе к ее середине (напротив зрачка) – колбочек.

В самом центре сетчатки находится участок, состоящий из максимально плотно расположенных колбочек – желтое пятно. Это зона наибольшей остроты зрения.

Детально рассматривая объект, мы глядим прямо на него, и изображение, преломившись в хрусталике, проецируется на желтое пятно.

Фоторецептор состоит из наружного части, ядерной области и зоны, контактирующей с нейронами сетчатки.

Реакция фоторецептора на свет возможна благодаря присутствию внутри его наружной части светочувствительных пигментов – веществ, разрушающихся под действием электромагнитных волн определенной длины.

Продукты распада пигментов вызывают реакцию рецептора и влияют на генерацию импульсов нейронами сетчатки.

В колбочках присутствуют пигменты, называемые йодопсинами (иначе, конопсинами). Их три типа: красно-, зелено- и сине-чувствительный. Каждая конкретная колбочка содержит один из йодопсинов, а все вместе они обеспечивают цветовое зрение.

Пигмент палочек родопсин чувствителен ко всему видимому диапазону. В связи с этим реакция палочек на оранжевый свет не отличается от реакции, скажем, на зеленый (черно-белое зрение).

Достоинством палочек является высокая светочувствительность. В сумерках, когда колбочки не могут функционировать, палочки остаются единственным источником зрительной информации.

При яркой освещенности палочки обеспечивают, прежде всего, четкое выделение границ объектов и реакцию на движение.

Генетическое заболевание, при котором наблюдается нарушение цветового зрения, называется дальтонизм.

В большинстве случаев он регистрируется у мужчин (7% против 0,5% у женщин) и связан с отсутствием одного из йодопсинов.

В результате дальтоник видит два из трех основных цветов, а оставшийся воспринимает как серый (за счет только палочек). Нарушение работы родопсина (и сумеречного зрения) возникает при дефиците витамина А.

В целом фоторецепторы «описывают» видимое нами изображение как совокупность красных, зеленых, синих и серых точек. После дополнительной обработки нейронами сетчатки эта информация по зрительному нерву поступает в головной мозг.

Функционирование сетчатки можно уподобить работе сканера или матрицы фотоаппарата, которые также описывают изображение в виде совокупности точек-пикселей. Различие в том, что у технических устройств все пиксели имеют одинаковый размер; в случае сетчатки «пиксели» минимальны в области желтого пятна и гораздо больше на периферии.

Это позволяет уменьшить общий объем информации и экономнее использовать «вычислительный ресурс» нашего мозга.

Зрительные центры головного мозга

Зрительный нерв, в составе которого около 1 млн. аксонов, выходит из глазницы и направляется в ЦНС. Перед входом в промежуточный мозг его волокна образуют перекрест – зрительную хиазму.

Перекрещивается только половина всех волокон, остальные идут к зрительным центрам на своей стороне мозга. После хиазмы аксоны зрительного тракта идут к одной из следующих областей:

  • Супрахиазменным ядрам гипоталамуса, которые используют информацию об интенсивности света для регуляции внутренних ритмов организма – прежде всего, суточных.
  • Верхним холмикам четверохолмия (средний мозг), которые управляют движениями глаз, дают команду об изменении диаметра зрачка и формы хрусталика, а также организуют ориентировочный рефлекс при появлении новых сигналов.
  • Нервным центрам в задней части таламуса (таламус – верхняя половина промежуточного мозга, где осуществляется подготовка зрительной информации для передачи в кору больших полушарий. Суть этой подготовки заключается в контрастировании изображения – подчеркивании границ между светлыми и темными областями.
  • Зрительной коре.

Зрительная кора занимает наиболее затылочную область поверхности больших полушарий. Здесь реализуется последовательное узнавание все более сложных визуальных образов и объединение разных потоков зрительной информации.

В самой задней затылочной зоне (первичная зрительная кора; рис. 35-5, внизу) происходит узнавание отрезков прямых линий. Разные нейроны реагируют на линии разной (по отношению к горизонту) ориентации – горизонтальные, вертикальные, под углом 30º и т.п.

Если сместиться немного вперед, то мы окажемся в области вторичной зрительной коры. Здесь происходит:

  • узнавание геометрических фигур (как суммы нескольких линий);
  • объединение черно-белого и цветового потоков сигналов (информация от палочек используется для определения границ объектов, информация от колбочек – для «заливки» их цветом);
  • сравнение информации от правого и левого глаза (попадает в одно полушарие благодаря хиазме) и за счет этого – вычисление расстояния до объектов и их объема.

Распознавание наиболее сложных и обобщенных признаков изображений связано с зоной, находящейся на границе затылочной, теменной и височной коры. Ее иногда называют третичной зрительной корой.

У обезьян здесь обнаружены нейроны, избирательно реагирующие на «лицо» другой конкретной обезьяны.

У человека эта область также связана с узнаванием знакомых лиц и, кроме того, со зрительной составляющей речи – различением и чтением текстов.

Инсульты и травмы первичной зрительной коры приводят к выпадению участков в поле зрения человека; инсульты вторичной и третичной коры – к нарушению восприятия и узнавания зрительных образов.

Повреждения первичной коры почти не компенсируются (здесь нейроны обладают врожденно заданной функцией); повреждения вторичной и третичной зон компенсируются хорошо, поскольку свойства соответствующих нейронов являются результатом обучение.

Источник: https://eyekraft.ru/zritelnaya-sistema

Зоны головного мозга и их функции

Зрительный центр коры головного мозга находится

Зоны мозга, расположенные в корковом слое, отвечают за разные функции организма и способности человека.

Взаимодействие всех отделов обеспечивает высшую психическую деятельность, в том числе мыслительные процессы, память и сознание, а также сложную двигательную активность.

Благодаря слаженной работе корковых отделов человек способен обучаться, у него формируются мысли и эмоции, вырабатывается манера поведения.

Определение

Существует карта мозга, которая составлена немецким неврологом К. Бродманом и представляет собой описание мозговых корковых зон человека с выделением особенностей клеточного строения.

Согласно карте, существует 52 поля, которые отличаются нейрональной организацией и функциями.

Участки делятся на виды: первичные и вторичные, которые получают импульсы, передаваемые таламусом, и третичные, взаимодействующие исключительно с двумя первыми видами полей. Их функции:

  1. Первичные. Анализ нервных сигналов определенной модальности.
  2. Вторичные. Обеспечивают взаимодействие анализаторных (первичных) участков.
  3. Третичные. Определяют высшую психическую деятельность (мыслительные процессы, речь, интеллектуальные способности).

Различают ассоциативные и проекционные отделы в корковом слое. Основная задача ассоциативных – обеспечение взаимодействия между отдельными частями коры. Проекционные поддерживают связь между участками коры и подкорковыми структурами.

Структура коркового слоя и функции отделов

Продольная борозда разделяет мозг на большие полушария, которые состоят из 6 функциональных зон коры:

  • Лобная.
  • Теменная.
  • Височная.
  • Затылочная.
  • Островок. Находится в углублении в Сильвиевой борозде.
  • Лимбическая. Располагается с краю каждого полушария относительно срединной плоскости.

Несмотря на относительное разделение функций отдельных зон коры головного мозга, каждый физиологический процесс, протекающий в организме, требует их тесного взаимодействия и предполагает функциональную интеграцию. К примеру, зрительный центр располагается в затылочной области, однако в комплексном восприятии и обработке зрительного стимула кроме затылочной доли участвуют лобные и височные отделы.

Латерализация (процесс координации определенных функций разными полушариями) функций мозга предполагает относительное их разделение между 2 полушариями.

К примеру, двигательные, осязательные, зрительные стимулы, поступающие из левой половины тела, перенаправляются в правое полушарие и наоборот.

Некоторые сложные задачи оба полушария выполняют совместно, но наибольшее количество функций разделено между ними.

К примеру, левое доминирует в формировании речи, правое руководит в процессе обеспечения ориентации в пространстве. Первичные зоны коркового слоя головного мозга бывают моторными и сенсорными, другие отделы называют ассоциативными, которые еще известны как унимодальные и гетеромодальные. Унимодальные отделы находятся рядом с соответствующей сенсорной областью.

Они более тонко и глубоко обрабатывают информацию, поступающую в сенсорную область. Гетеромодальные отделы получают конвергентные (обладающие схожими признаками) данные из множества сенсорных и двигательных отделов. Благодаря работе гетеромодальных отделов происходит сравнение вновь поступающей информации с данными, хранящимися в инстинктивной и приобретенной памяти.

Корковый слой мозга разделен на зоны, которые в зависимости от расположения отвечают за выполнение разных задач, что позволяет выявлять участок поражения нервной ткани на основании симптомов.

К примеру, зона Брока, известная как двигательный речевой центр, находится в височной части коркового слоя. Повреждение этого участка мозга провоцирует развитие моторной афазии.

Пациент понимает речь, но не способен произносить слова, разговаривать.

Моторные отделы

Моторные зоны, находящиеся в коре больших полушарий, ответственны за выполнение волевых движений всех частей туловища. Благодаря участию ассоциативных отделов в процессе организации движений, осуществляется сложная, тонкая двигательная активность.

Двигательная зона (содержит поля Бродмана 4,6 и 8) коры, покрывающей головной мозг, расположена в передней части черепной коробки, пролегает перед линией центральной борозды, разделяющей доли мозга – лобную и теменную.

Этот участок контролирует и руководит осуществлением произвольных движений. Сигналы, поступающие из этого отдела мозга, приводят к сокращению мышц, пролегающих в пальцах рук и речевом аппарате (губы, язык), что обуславливает выполнение тонких движений. Этот участок моторной области обеспечивает способности человека:

  1. Произносить слова, говорить.
  2. Писать буквы, цифры и знаки.
  3. Умение играть на музыкальных инструментах.

Тонкой моторикой управляет большая часть двигательной области. Меньший участок нервной ткани регулирует сокращение и активность мышц спины, брюшного пресса и нижних конечностей. Этот участок моторной зоны обеспечивает устойчивость позы и выполнение крупных движений.

Сенсорные отделы

Сенсорные зоны (содержат поля Бродмана 1-3, 5 и 7) располагаются в дальних отделах коры, покрывающей большие полушария, отграниченных от лобного участка центральной извилиной.

Эта доля, называемая теменной, содержит участок коры, который получает информацию от кожных рецепторов.

Этот участок мозговой ткани обрабатывает информацию, формирующуюся при контакте кожи с посторонними предметами, водой, воздухом.

Благодаря деятельности этого отдела человек чувствует тепло, холод, ощущение от прикосновения при тактильном контакте, различает фактуру (шероховатую, острую или гладкую) и температуру (холодную или горячую) поверхности. В затылочной области находятся зрительные зоны коры, куда идут сведения от глаз. Зрительные нервы раздваиваются у основания мозга.

Одно ответвление отходит к противоположному полушарию. Обработкой сигналов, поступающих от органов зрения, занимаются поля Бродмана под номером 17-19.

В поле 17 завершается центральный путь – здесь происходит оценка наличия и интенсивности импульсов, проходящих по волокнам зрительного нерва.

В поле 18 и 19 осуществляется анализ таких параметров изображения, как цветовой оттенок, размеры, форма.

Слуховая зона расположена в височной области коры, покрывающей головной мозг, анализирует слуховые сигналы разной степени сложности. Карта мозга отводит слуховому отделу поля 22, 41 и 42. Здесь происходит оценка таких характеристик звука, как тембр, сила, громкость звучания, высота.

Благодаря деятельности этого отдела человек понимает с какой стороны поступает звуковой сигнал, определяет расстояние до источника звука, дифференцирует речь. Обонятельная система, как проекция в коре головного мозга, находится в поле 34. Вкусовой отдел занимает поле 43.

Ассоциативные зоны

Ассоциативные зоны находятся в коре, покрывающей большие полушария, не связаны с двигательными процессами или сенсорной деятельностью.

Эти зоны головы занимают около 80% площади коры, преимущественно локализуются в долях – лобной и височной, а также затылочной и теменной.

Каждый ассоциативный участок тесно взаимодействует с проекционными зонами, в том числе сенсорными и моторными, пролегающими в коре больших полушарий, образующих головной мозг.

Считается, что в этих отделах происходит объединение разрозненных фрагментов информации, в результате чего образуются сложные формы сознания. Проекционный участок опоясан ассоциативными областями, что обеспечивает взаимодействие, которое осуществляется посредством нейронов полисенсорной природы. Нервные клетки воспринимают сигналы, поступающие от разных органов и систем.

Они реагируют на информацию, передаваемую органами зрения и слуха, а также кожными рецепторами. Способность воспринимать информацию разного плана позволяет интегрировать данные, объединять их в общую систему, координировать двигательную и сенсорную деятельность. С ассоциативными зонами головного мозга и их функциями удобнее знакомиться при помощи таблицы.

ОтделыФункцииПоследствия поражения
ЛобныйВысшая психическая деятельность – личностные характеристики, творчество, влеченияУтрата способности планировать и предвидеть, нарушение продуманного, целенаправленного поведения
ТеменнойФормирование субъективной оценки окружающего пространства, получение представления о положении собственного тела и его перемещенииУтрата способности узнавать знакомые предметы при сохранении функциональности органов зрения
ВисочныйРечевая функция, распознавание и хранение речевой информации, воспроизводимой человеком и услышанной имУтрата способности понимать чужую речь, невозможность распознавать слова при сохранении функциональности органов слуха

Ассоциативные отделы, находящиеся в теменной доле, объединяют информацию, которая приходит от соматосенсорной системы.

Соматосенсорная система образована рецепторами, обеспечивающими чувствительность, и центрами обработки информации, поддерживает сенсорные модальности, как температура, осязание, проприоцепция (ощущение своего тела – его положения, передвижения его частей), ноцицепция (физиологическая боль).

Ассоциативные отделы, находящиеся в височной части, отвечают за распознавание мелодий и разных сочетаний музыкальных звуков. Поле 37 позволяет запоминать слова. В височной части также содержатся центры сна, сновидений и памяти. Поле 39, расположенное на границе, разделяющей доли – височную, теменную, затылочную, содержит центр чтения, благодаря которому человек понимает письменный текст.

Патологии и признаки поражения отделов

Обширное поражение медиальных участков лобной доли провоцирует развитие абулии, которая проявляется замедленными реакциями, равнодушием, безучастностью к происходящему. При повреждении участка префронтальной орбитальной коры у пациента наблюдается отсутствие критической оценки собственного поведения, эмоциональная лабильность.

Двусторонняя травма в лобной области сопровождается признаками: ажитация, беспокойное поведение, навязчивость, многословие. Аномальное поведение является признаком деменции, которая развивается на фоне дегенеративных процессов, затрагивающих лобные доли. Повреждение мозгового вещества двигательной коры вызывает гемипарез или мышечную слабость.

Нарушения развиваются на стороне, противоположной местоположению патологического очага в мозге. Повреждение зрительного участка в одном полушарии приводит к развитию двухсторонней слепоты в половине поля обзора. Поражение поля 19 ассоциируется со зрительной агнозией – нарушением зрительного восприятия. Пациент видит предмет, но не может его распознать.

Информация, которая поступает через зрительный анализатор, не обрабатывается или обрабатывается неправильно, что приводит к невозможности различать знакомые предметы, лица людей. У таких больных нарушается цветовое восприятие – они не различают оттенки.

Повреждение поля 22 приводит к развитию музыкальной глухоты (нарушение восприятия музыкальных произведений), появлению слуховых галлюцинаций, нарушению реакций, ориентированных на слуховые раздражители. Поражение поля 41 сопровождается развитием корковой глухоты (невозможность восприятия звуковых сигналов).

Поражение поля 34 сопровождается нарушением восприятия запахов, в том числе обонятельными галлюцинациями. Патологические структурные изменения в нервной ткани поля 39 приводят к неспособности читать и писать. При повреждении ткани поля 37 человек не помнит названия предметов.

Зоны мозга разделяются на сенсорные и двигательные, а также ассоциативные – причем все участки взаимодействуют между собой. Каждый отдел наделен определенными функциями, которые в совокупности обуславливают высшую психическую и сложную двигательную деятельность.

Источник: https://golovmozg.ru/struktura/zony-golovnogo-mozga

Зрительный центр коры головного мозга находится

Зрительный центр коры головного мозга находится

Кора большого мозга представлена равномерным слоем серого вещества толщиною 1,3-4,5 мм, состоящим более чем из 14 млрд. нервных клеток. Благодаря складчатости коры ее поверхность достигает больших размеров — около 2200 см2.

Толща коры состоит из шести слоев клеток, которые различают при специальной окраске и исследовании под микроскопом. Клетки слоев различны по форме и размерам. От них в глубь мозга отходят отростки.

Строение коры головного мозга

Было установлено, что разные участки — поля коры полушарий различаются по строению и функциям. Таких полей (называемых еще зонами, или центрами) выделяют от 50 до 200. Строгих границ между зонами коры большого мозга не существует. Они составляют аппарат, обеспечивающий прием, переработку приходящих сигналов и ответную реакцию на поступившие сигналы.

Зоны коры головного мозга

В задней центральной извилине, позади от центральной борозды, располагается зона кожной и суставно-мышечной чувствительности. Здесь воспринимаются и анализируются сигналы, возникающие при касании к нашему телу, при воздействии на него холода или тепла, болевых воздействиях.

Зоны коры головного мозга

В противоположность этой зоне — в передней центральной извилине, спереди от центральной борозды, расположена двигательная зона.

В ней выявлены участки, которые обеспечивают движения нижних конечностей, мышц туловища, рук, головы. При раздражении этой зоны электротоком возникают сокращения соответствующих групп мышц.

Ранения или другие повреждения коры двигательной зоны влекут за собой паралич мышц тела.

В височной доле находится слуховая зона. Сюда поступают и здесь анализируются импульсы, возникающие в рецепторах улитки внутреннего уха. Раздражения участков слуховой зоны вызывают ощущения звуков, а при поражении их болезнью утрачивается слух.

Зрительная зона расположена в коре затылочных долей полушарий. При ее раздражении электрическим током во время операций на мозге человек испытывает ощущения вспышек света и темноты. При поражении ее какой-либо болезнью ухудшается и теряется зрение.

Вблизи боковой борозды расположена вкусовая зона, где анализируются и формируются ощущения вкуса на основании сигналов, возникающих в рецепторах языка.

Обонятельная зона расположена в так называемом обонятельном мозге, у основания полушарий.

При раздражении этих зон во время хирургических операций или при воспалении люди ощущают запах или вкус каких-либо веществ.

Чисто речевой зоны не существует. Она представлена в коре височной доли, нижней лобной извилине слева, участках теменной доли. Их поражения болезнями сопровождаются расстройствами речи.

Первая и вторая сигнальные системы

Неоценима роль коры большого мозга в совершенствовании первой сигнальной системы и развитии второй. Эти понятия разработаны И.П.Павловым. Под сигнальной системой в целом понимают всю совокупность процессов нервной системы, осуществляющих восприятие, переработку информации и ответную реакцию организма. Она связывает организм с внешним миром.

Первая сигнальная система

Первая сигнальная система обусловливает восприятие посредством органов чувств чувственно-конкретных образов. Она является основой для образования условных рефлексов. Эта система существует как у животных, так и у человека.

В высшей нервной деятельности человека развилась надстройка в виде второй сигнальной системы. Она свойственна только человеку и проявляется словесным общением, речью, понятиями. С появлением этой сигнальной системы стали возможными отвлеченное мышление, обобщение бесчисленных сигналов первой сигнальной системы. По И.П.Павлову, слова превратились в «сигналы сигналов».

Вторая сигнальная система

Возникновение второй сигнальной системы стало возможным благодаря сложным трудовым взаимоотношениям между людьми, так как эта система является средством общения, коллективного труда. Словесное общение не развивается вне общества. Вторая сигнальная система породила отвлеченное (абстрактное) мышление, письмо, чтение, счет.

Слова воспринимаются и животными, но совершенно отлично от людей. Они воспринимают их как звуки, а не их смысловое значение, как люди. Следовательно, у животных нет второй сигнальной системы. Обе сигнальные системы человека взаимосвязаны.

Они организуют поведение человека в широком смысле слова. Причем вторая изменила первую сигнальную систему, так как реакции первой стали в значительной мере зависеть от социальной среды. Человек стал в состоянии управлять своими безусловными рефлексами, инстинктами, т.е.

первой сигнальной системой.

Функции коры мозга

Знакомство с наиболее важными физиологическими функциями коры большого мозга свидетельствует о необычайном ее значении в жизнедеятельности. Кора вместе с ближайшими к ней подкорковыми образованиями является отделом центральной нервной системы животных и человека.

Функции коры головного мозга — осуществление сложных рефлекторных реакций, составляющих основу высшей нервной деятельности (поведения) человека. Не случайно у него она получила наибольшее развитие. Исключительным свойством коры являются сознание (мышление, память), вторая сигнальная система (речь), высокая организация труда и жизни в целом.

Источник: animals-world.ru

Источник: https://naturalpeople.ru/zritelnyj-centr-kory-golovnogo-mozga-nahoditsja/

Доли головного мозга: функции и назначение зон полушарий – Извилина

Зрительный центр коры головного мозга находится

Современным ученым доподлинно известно, что благодаря функционированию головного мозга возможны такие способности, как осознание сигналов, которые получены из внешней среды, мыслительная деятельность, запоминание мышления.

Способность личности осознавать собственные отношения с другими людьми непосредственно связано с процессом возбуждения нейронных сетей. Причем речь идет именно о тех нейронных сетях, которые расположены в коре. Она представляет собой структурную основу сознания и интеллекта.

В данной статье рассмотрим, как устроена кора головного мозга, зоны коры головного мозга будут подробно описаны.

Неокортекс

Кора включает в себя около четырнадцати миллиардов нейронов. Именно благодаря им осуществляется функционирование основных зон. Подавляющая часть нейронов, до девяноста процентов, формирует неокортекс.

Он является частью соматической НС и ее высшим интегративным отделом.

Важнейшими функциями коры головного мозга выступают восприятие, переработка, интерпретация информации, которую человек получает при помощи всевозможных органов чувств.

Помимо этого, неокортекс управляет сложными движениями системы мышц человеческого тела. В нем расположены центры, принимающие участие в процессе речи, хранении памяти, абстрактном мышлении. Большая часть процессов, которые в нем происходят, формирует нейрофизическую основу человеческого сознания.

Из каких отделов еще состоит кора головного мозга? Зоны коры головного мозга рассмотрим ниже.

Палеокортекс

Является еще одним большим и важным отделом коры. В сравнении с неокортексом у палеокортекса более простая структура. Процессы, которые здесь протекают, редко отражаются в сознании. В этом отделе коры высшие вегетативные центры локализуются.

Связь коркового слоя с другими отделами мозга

Немаловажно рассмотреть связь, которая имеется между нижележащими отделами мозга и корой больших полушарий, например, с таламусом, мостом, средним мостом, базальными ядрами. Осуществляется эта связь при помощи крупных пучков волокон, которые внутреннюю капсулу формируют.

Пучки волокон представлены широкими пластами, которые сложены из белого вещества. В них расположено огромное количество нервных волокон. Некоторая часть этих волокон обеспечивает передачу нервных сигналов к коре.

Остальная часть пучков передает нервные импульсы к расположенным ниже нервным центрам.

Как устроена кора головного мозга? Зоны коры головного мозга будут представлены далее.

Строение коры

Самым большим отделом мозга является его кора. Причем зоны коры являются лишь одним типом частей, выделяемых в коре. Помимо этого кора разделена на два полушария – правое и левое. Между собой полушария соединены пучками белого вещества, формирующими мозолистое тело. Его функция – обеспечивать координацию деятельности обоих полушарий.

Классификация зон коры головного мозга по их расположению

Несмотря на то что кора имеет огромное количество складок, в общем расположение ее отдельных извилин и борозд постоянно. Главные их них являются ориентиром при выделении областей коры. К таким зонам (долям) относятся – затылочная, височная, лобная, теменная. Несмотря на то что они классифицируются по месту расположения, каждая из них имеет свои собственные специфические функции.

Слуховая зона коры головного мозга

К примеру, височная зона является центром, в котором расположен корковый отдел анализатора слуха. Если происходит повреждение этого отдела коры, может возникнуть глухота. Помимо этого в слуховой зоне расположен центр речи Вернике.

Если повреждению подвергается он, то человек теряется способность к восприятию устной речи. Человек воспринимает ее как простой шум. Также в височной доле есть нейронные центры, которые относятся к вестибулярному аппарату.

Если повреждаются они, нарушается чувство равновесия.

Речевые зоны коры головного мозга

В лобной доле коры сосредоточены речевые зоны. Речедвигательный центр расположен тоже здесь.

Если происходит его повреждение в правом полушарии, то человек теряет способность изменять тембр и интонацию собственной речи, которая становится монотонной.

Если же повреждение речевого центра произошло в левом полушарии, то пропадает артикуляция, способность к членораздельной речи и пению. Из чего еще состоит кора головного мозга? Зоны коры головного мозга имеют различные функции.

Зрительные зоны

В затылочной доле располагается зрительная зона, в которой находится центр, отвечающий на наше зрение как таковое. Восприятие окружающего мира происходит именно этой частью мозга, а не глазами. Именно затылочная зона коры ответственна за зрение, и ее повреждение может привести к частичной или полной потере зрения. Зрительная зона коры головного мозга рассмотрена. Что дальше?

Для теменной доли тоже характерны свои собственные специфические функции. Именно эта зона отвечает за способность анализировать информацию, которая касается тактильной, температурной и болевой чувствительности. Если происходит повреждение теменной области, рефлексы головного мозга нарушаются. Человек не может на ощупь распознавать предметы.

Двигательная зона

Поговорим о двигательной зоне отдельно. Следует отметить, что эта зона коры никак не соотносится с долями, рассмотренными выше. Она является частью коры, содержащей прямые связи с мотонейронами в спинном мозге. Такое название носят нейроны, непосредственно управляющие деятельностью мышц тела.

Основная двигательная зона коры больших полушарий располагается в извилине, которая называется прецентральной. Эта извилина представляет собой зеркальное отображение сенсорной зоны по многим аспектам.

Между ними имеется контралатеральная иннервация. Если сказать иными совами, то иннервация направлена на мышцы, которые расположены на другой стороне тела.

Исключение – лицевая область, для которой характерен контроль мышц двусторонний, расположенных на челюсти, нижней части лица.

Немного ниже основной двигательной зоны расположена дополнительная зона. Ученые полагают, что она имеет независимые функции, которые связаны с процессом вывода двигательных импульсов. Дополнительная двигательная зона также изучалась специалистами. Эксперименты, которые ставились над животными, показывают, что стимуляция этой зоны провоцирует возникновение двигательных реакций.

Особенностью является то, что подобные реакции возникают даже в том случае, если основная двигательная зона была изолирована или разрушена полностью. Она также вовлечена в планирование движений и в мотивацию речи в полушарии, которое является доминантным. Ученые полагают, что при повреждении дополнительной двигательной может возникнуть динамическая афазия.

Рефлексы головного мозга страдают.

Классификация по строению и функциям коры головного мозга

Физиологические эксперименты и клинические испытыния, которые проводились еще в конце девятнадцатого века, позволили установить границы между областями, на которые проецируются разные рецепторные поверхности. Среди них выделяют органы чувств, которые направлены на внешний мир (кожная чувствительность, слух, зрение), рецепторы, заложенные непосредствен в органах движения (двигательный или кинетический анализаторы).

Зоны коры, в которых располагаются разнообразные анализаторы, могут быть классифицированы по строению и функциям. Так, их выделяют три. К ним относятся: первичная, вторичная, третичная зоны коры головного мозга.

Развитие эмбриона предполагает закладывание только первичных зон, характеризующихся простой цитоархитектоникой. Далее происходит развитие вторичных, третичные развиваются в самую последнюю очередь. Для третичных зон характерно самое сложное строение.

Рассмотрим каждую из них немного подробнее.

Центральные поля

За долгие годы клинических исследований ученым удалось накопить значительный опыт. Наблюдения позволили установить, например, что повреждения различных полей, в составе корковых отделов разных анализаторов, могут отразиться далеко не равнозначно на общей клинической картине.

Если рассматривать все эти поля, то среди них можно выделить одно, которое занимает центральное положение в ядерной зоне. Такое поле носит название центрального или первичного. Находится оно одновременно в зрительной зоне, в кинестетической, в слуховой. Повреждение первичного поля влечет за собой весьма серьезные последствия.

Человек не может воспринимать и осуществлять самые тонкие дифференцировки раздражителей, влияющих на соответствующие анализаторы. Как еще классифицируются участки коры головного мозга?

Первичные зоны

В первичных зонах расположен комплекс нейронов, который наиболее предрасположен к обеспечению двусторонних связей между корковыми и подкорковыми зонами. Именно этот комплекс наиболее прямым и коротким путем соединяет кору больших полушарий с разнообразными органами чувств. В связи с этим данные зоны обладают способностью очень подробной идентификации раздражителей.

Важной общей чертой функциональной и структурной организации первичных областей является то, все они имеют четкую соматическую проекцию.

Это означает, что отдельные периферические точки, например, кожные поверхности, сетчатка глаза, скелетная мускулатура, улитки внутреннего уха, имеют собственную проекцию в строго ограниченные, соответствующие точки, которые находятся в первичных зонах коры соответствующих анализаторов. В связи с этим им было дано название проекционных зон коры головного мозга.

Вторичные зоны

По-другому эти зоны называются периферическими. Такое название дано им совсем не случайно. Они находятся в периферических отделах участков коры. От центральных (первичных) вторичные зоны отличаются нейронной организацией, физиологическими проявлениями и особенностями архитектоники.

Попробуем разобраться, какие эффекты возникают, если на вторичные зоны воздействует электрический раздражитель или происходит их повреждение. Главным образом возникающие эффекты касаются наиболее сложных видов процессов в психике. В том случае, если происходит повреждение вторичных зон, то элементарные ощущения остаются в относительной сохранности.

В основном наблюдаются нарушения в способности правильного отражения взаимных соотношений и целых комплексов элементов, из которых состоят различные объекты, которые мы воспринимаем.

К примеру, если повреждению подверглись вторичные зоны зрительной и слуховой коры, то можно наблюдать возникновение слуховых и зрительных галлюцинаций, которые разворачиваются в определенной временной и пространственной последовательности.

Вторичные области имеют значительную важность в реализации взаимных связей раздражителей, которые выделяются при помощи первичных зон коры. Помимо этого, значительную роль они играют в интеграции функций, которые осуществляют ядерные поля разных анализаторов в результате объединения в сложные комплексы рецепций.

Таким образом, вторичные зоны представляют особую важность для реализации психических процессов в более сложных формах, которые требуют координации и которые связаны с подробным анализом соотношений между предметными раздражителями. В ходе этого процесса устанавливаются специфические связи, которые носят название ассоциативных.

Афферентные импульсы, поступающие в кору от рецепторов разных внешних органов чувств, достигают вторичных полей посредством множества дополнительных переключений в ассоциативном ядре таламуса, который также называется зрительным бугром. Афферентные импульсы, следующие в первичные зоны, в отличие от импульсов, следуют во вторичные зоны, достигают их путем, который короче.

Он реализован посредством реле-ядра, в зрительном бугре.

Мы разобрались, за что отвечает кора головного мозга.

Что такое таламус?

От таламических ядер к каждой доле мозговых полушарий подходят волокна. Таламус является зрительным бугром, расположенным в центральной части переднего отдела мозга, состоит из большого количества ядер, каждое из которых осуществляет передачу импульса в определенные участки коры.

Все сигналы, которые поступают к коре (исключение составляют только обонятельные), проходят через релейные и интегративные ядра зрительного бугра. От ядер таламуса волокна направляются к сенсорным зонам. Вкусовая и соматосенсорная зоны расположены в теменной доле, слуховая сенсорная зона – в височной доле, зрительная – в затылочной.

Импульсы к ним поступают, соответственно, от вентро-базальных комплексов, медиальных и латеральных ядер. Моторные зоны связаны с вентеральным и вентролатеральным ядрами таламуса.

Десинхронизация ЭЭГ

Что произойдет, если на человека, находящегося в состоянии полного покоя, подействует очень сильный раздражитель? Естественно, что человек полностью сконцентрируется на данном раздражителе.

Переход умственной деятельности, который осуществляется от состояния покоя к состоянию активности, отражается на ЭЭГ бета-ритмом, который замещает альфа-ритм. Колебания становятся более частыми.

Такой переход называют десинхронизацией ЭЭГ, появляется он в результате поступления сенсорного возбуждения в кору от неспецифических ядер, расположенных в таламусе.

Активирующая ретикулярная система

Диффузную нервную сесть составляют неспецифические ядра. Находится эта система в медиальных отделах таламуса. Он является передним отделом активирующей ретикулярной системы, регулирующей возбудимость коры. Разнообразные сенсорные сигналы способны активировать данную систему.

Сенсорные сигналы могут быть как зрительными, так и обонятельными, соматосенсорными, вестибулярными, слуховыми. Активизирующая ретикулярная система представляет собой канал, который передает к поверхностному слою коры данные сигналов через расположенные в таламусе неспецифические ядра.

Возбуждение АРС необходимо для того, чтобы человек был способен поддерживать состояние бодрствования. Если в данной системе возникают нарушения, то могут наблюдаться коматозные сноподобные состояния.

Источник: https://fiz-disp.ru/prochee/doli-golovnogo-mozga-funktsii-i-naznachenie-zon-polusharij.html

Центр зрения в мозге – Лечение глаз

Зрительный центр коры головного мозга находится

НАШИ ЧИТАТЕЛИ РЕКОМЕНДУЮТ!

Для лечения суставов наши читатели успешно используют Око-плюс. Видя, такую популярность этого средства мы решили предложить его и вашему вниманию.
Подробнее здесь…

Что такое бинокулярное зрение? Бинокулярным зрением называют способность четко видеть изображение сразу двумя глазами. Две картинки, получаемые обоими глазами, формируются в одно объемное изображение в коре мозга головы.

Бинокулярное зрение или стереоскопическое зрение позволяет видеть объемные черты, проверять расстояние между объектами. Такой тип зрения является обязательным для многих профессий – водителей, летчиков, моряков, охотников.

Кроме бинокулярного зрения существует еще и монокулярное, это зрение только одним глазом, мозг головы выбирает только одну картинку для восприятия и блокирует вторую. Такой тип зрения позволяет определить параметры объекта – его форму, ширину и высоту, однако не дает сведений о расположении предметов в пространстве.

Хотя монокулярное зрение дает неплохие результаты в целом, бинокулярное имеет весомые преимущества – остроту зрения, объемные предметы, прекрасный глазомер.

Механизм и условия

Основным механизмом бинокулярного зрения является фузионный рефлекс, то есть способность к слиянию двух изображений в одну стереоскопическую картину в коре головного мозга. Для того чтобы картинки стали одним целым, изображения, полученные от обеих сетчаток, должны иметь равные форматы – форму и величину, кроме этого, они должны попадать на идентичные корреспондирующие точки сетчатки.

Каждая точка поверхности одной сетчатки располагает своей корреспондирующей точкой на сетчатке другого глаза. Неидентичные точки – это диспаратные или несимметрические участки. Когда изображение попадает на диспаратные точки, слияние не произойдет, напротив, возникнет двоение картины.

Какие нужны условия для нормального бинокулярного зрения:

  • способность к фузии – бифовеальому слиянию;
  • согласованность в работе глазодвигательных мышц, позволяющая обеспечить параллельное положение глазных яблок при взоре вдаль и соответствующее сведение зрительных осей при взоре вблизи, совместная работа помогает получить правильные движения глаз в направлении рассматриваемого предмета;
  • расположение глазных яблок в одной горизонтальной и фронтальной плоскости;
  • острота зрения обоих органов зрения не менее 0,3-0,4;
  • получение изображений равных по величине на сетчатках обоих глаз;
  • прозрачность роговой оболочки, стекловидного тела, хрусталика;
  • отсутствие патологических изменений сетчатки глаза, зрительного нерва и других отделов органа зрения, а также подкорковых центров и коры головного мозга.

Как определить

Для определения наличия бинокулярного зрения воспользуйтесь одним или несколькими способами, которые приведены ниже:

  • «Дыра в ладони» или метод Соколова – приставьте к глазу трубку (можно использовать свернутый лист бумаги) и посмотрите вдаль. Затем со стороны другого глаза приставьте ладонь. При нормальном бинокулярном зрении у человека создастся впечатление, что в центре ладони есть отверстие, которое и позволяет видеть, а на самом деле изображение просматривается через трубку.
  • Способ Кальфа или проба с промахами – возьмите две спицы для вязания или 2 карандаша, их концы обязательно должны быть острыми. Держите одну спицу вертикально перед собой, а другую в горизонтальном положении. Затем соедините спицы (карандаши) концами. Если у вас бинокулярное зрение, вы легко справитесь с заданием, если зрение монокулярное, вы промахнетесь с соединением.
  • Проба чтения с карандашом – читая книгу, поместите в нескольких сантиметрах от носа карандаш, который закроет часть текста. При бинокулярном зрении вы все равно сможете прочесть его, так как в мозге головы происходит наложение изображений от обоих глаз без смены положения головы;
  • Четырехточечный цветотест – в основе подобного теста лежит разделение полей зрения двух глаз, достигнуть которое возможно, используя цветные очки – фильтры. Поставьте перед собой два зеленых, один красный и один белый предметы. Наденьте очки с зелеными и красными стеклами. При бинокулярном зрении вы увидите зеленые и красный объекты, а белый окрасится в зелено-красный цвет. При монокулярном зрении белый объект окрасится в цвет линзы ведущего глаза.

Бинокулярное зрение можно развить в любом возрасте. Однако такой тип зрения не возможен при косоглазии, так как в этом случае происходит отклонение одного глаза в сторону, что не дает сходиться зрительным осям.

Атрофия зрительного нерва при глаукоме

Зрительный нерв — это уникальное образование, устройство и функционал которого отличаются от всех остальных нервов в организме. Фактически, это переплетенные между собой нервные волокна.

В центре этого переплетения расположен артериальный канал сетчатки.

Через него изображение передается в головной мозг в виде электронных импульсов, что становится невозможным при разрушении этих волокон.

https://www.youtube.com/watch?v=mklfM2xlvrM

Более двадцати процентов случаев от общего числа слепоты и слабовидения происходят по причине атрофии. Атрофия – это истощение органов и тканей в организме или их уменьшение, происходящее при жизни.

Атрофия зрительного нерва наступает, когда составляющие его волокна начинают гибнуть, а на их месте образуется соединительная ткань.

Причин этому очень много, но в каждом конкретном случае определить их точно и выбрать лечение под силу только врачу-офтальмологу.

Причины и симптомы

Наследственность или врожденная патология являются первопричинами атрофии зрительного нерва. Кроме того, она может возникнуть вследствие заболевания органов зрения, а именно патологий в зрительном нерве и сетчатке. Причиной этого недуга может также явиться заболевание нервной системы или болезни, не связанные с органами зрения.

Основные причины возникновения атрофии зрительного нерва:

  1. Инфекционные болезни.
  2. Черепно-мозговые травмы и травмы глаз.
  3. Заболевания ЦНС.
  4. Отравления химическими веществами или алкогольные.
  5. Сбои кровообращения органов зрения.
  6. Физическое воздействие на органы зрения, вследствие чего задевается зрительный нерв.
  7. Повышенное внутричерепное давление.

Существует несколько классификаций атрофии:

  • законченная или полная и прогрессирующая, зависит от степени гибели зрительного нерва: при первой у пациента есть шанс восстановить зрение, если атрофия законченная, то последствия необратимы;
  • наследственная и приобретенная;
  • частичная или полная;
  • односторонняя и двусторонняя.

Самый первый признак атрофии – нарушение остроты зрения. При этом глазное яблоко может не иметь патологий, но электронные импульсы от передачи изображений не достигают головного мозга.

Атрофия бывает:

  • первичной, при которой нарушается центральное зрение и нередко появление скотом, то есть темных пятен перед глазами,
  • и вторичной, затрагивающей периферийное зрение и возникающей вследствие различных патологий.

Пациент испытывает трудности при чтении, может нарушаться цветовосприятие, может начаться потеря в пространстве. Признаки вторичной атрофии зрительного нерва обусловлены причинами ее возникновения.

При поздней стадии сифилиса или параличе у пациента зрение падает постепенно. Если, например, у него склероз, то возможно выпадение центрального поля зрения.

При гипертонии затрагивается боковое зрение. Также это заболевание может стать следствием обильной кровопотери, тогда поражены нижние границы видимости. Если зрительный нерв сдавлен, то проявления вероятно разными признаками в зависимости от участка, на который оказано давление.

Лечение назначается в зависимости от того, по какой причине она образовалась. При обнаружении у себя признаков атрофии зрительного нерва, таких как амавроз, то есть внезапная утрата зрения, скотома, тумана в глазах и слепота необходимо срочно обследоваться у окулиста, чтобы избежать плачевных последствий.

Диагностика и лечение

Перед тем, как провести комплексное офтальмологическое обследование, выясняется наличие у пациента заболеваний, приводящих к атрофии зрительного нерва, обрабатывается информация об образе жизни, контактах с химическими веществами и алкоголем.

Далее проводится физикальное обследование глазных яблок, выявляется острота зрения, проводится периметрия и степень цветоощущения.

Основной метод выявления атрофии – офтальмоскопия, то есть изучение внутреннего строения глаза. Проводится при помощи офтальмоскопа, в процессе процедуры в глаз пациента направляется луч света.

Различают несколько видов этой диагностики:

  1. При обратном методе глазное дно исследуется в перевернутом виде.
  2. Прямая офтальмоскопия возможна, если предварительно закапать в глаз пациенту специальный сосудорасширяющий раствор, исследование происходит при увеличении изображения в пятнадцать раз.

Помимо офтальмоскопии для диагностики атрофии применяется периметрия. Она выявляет доступное глазу видимое пространство и его границы, тем самым выявляя степень нарушения периферийного зрения. Применяется кинетическая форма периметрии и статистическая, то есть компьютерная.

Степень тяжести атрофии может быть различна, положительного результат в лечении этого недуга можно достичь только при частичной гибели тканей.

Скорректировать курс лечения для пациента с атрофией зрительного нерва непростая задача для специалистов, так как утраченные нервные волокна практически не восстанавливаются.

Шансы есть при терапии нервной ткани, но при условии, что она проведена вовремя.

Как правило, атрофия зрительного нерва не возникает сама по себе, а является следствием различных патологий глаз. По этой причине лечение стоит начинать с устранения этих патологий. Если успеть приняться за лечение с начала болезни и в течение пары недель, то зрение возможно восстановить целиком.

Лечение проводится следующим образом: ликвидируется воспаление и отечность нервных волокон, восстанавливается питание и кровообращение зрительного нерва. Такой курс лечения занимает довольно много времени и зачастую не приносит ожидаемого эффекта, если его не начать незамедлительно после установления диагноза.

Основной упор делается на лечение болезни, повлекшей за собой атрофию зрительного нерва. Параллельно проводится курс терапии для устранения последствий этого заболевания, давшего осложнение на зрение: капли, уколы, а также лекарственные средства для приема внутрь.

Этот курс, как правило, состоит из ряда мероприятий:

  1. Стимулирование кровообращение при помощи сосудорасширяющих препаратов.
  2. Применение биогенных стимуляторов, ускоряющих обмен веществ в тканях.
  3. Замедление воспаления при помощи гормональных средств.
  4. Активизация нервной системы при помощи эмоксипина.
  5. Помимо физиотерапии успешно применяется рефлексотерапия.

Некоторые отдельные случаи требуют хирургического вмешательства.

Стоит отметить, что лечение атрофии зрительного нерва народными средствами не просто неэффективно, но и часто вредоносно, кроме того, отнимает драгоценное время у пациента. Нельзя также игнорировать признаки начавшегося заболевания. Оперативное обращение в проверенное медицинское учреждение повысит шансы на выздоровление.

Источник: https://ofto.lechenie-zreniya.ru/blizorukost/tsentr-zreniya-v-mozge/

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: