Значение микроциркуляторного русла

Содержание
  1. СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА сосуды микроциркуляторного русла
  2. Артериальное звено микроциркуляторного русла
  3. Артериолы
  4. Прекапилляры (прекапиллярные артериолы, или метартериолы)
  5. Капилляры
  6. Характеристика эндотелия
  7. Функции эндотелия:
  8. Классификация капилляров
  9. Венозное звено микроциркуляторного русла: посткапилляры, собирательные венулы и мышечные венулы
  10. Артериоло-венулярные анастомозы
  11. Некоторые термины из практической медицины:
  12. Микроциркуляторное русло: его сосуды, строение, функции
  13. Сосуды микроциркуляторного русла
  14. Строение русла микроциркуляции
  15. Обмен веществ
  16. Регуляция потока крови
  17. Централизация кровообращения
  18. У вас есть вопросы?
  19. Анатомия сердечно-сосудистой системы
  20. 2. Строение и функция большого круга кровообращения
  21. 3. Строение и функция малого круга кровообращения
  22. 4. Из каких отделов состоит кровеносное сосудистое русло. Значение каждого из них
  23. 5. Значение артерий. Строение стенок крупных, средних и мелких артерий
  24. 6. Значение микроциркуляторного русла. Из каких звеньев оно состоит?
  25. 7. Строение стенки и назначение артериол и прекапилляров
  26. 8. Строение стенки и назначение капилляров
  27. 9. Строение стенок и назначение посткапилляров и венул
  28. 10. Что относится к приспособительным механизмам кровеносного микроциркулятрного русла?
  29. Структурные и функциональные особенности компонентов микроциркуляторного русла
  30. Тип III — синусы и синусоиды. Их особенностью является эндотелий с широкими межклеточными щелями, каналами или промежутками и прерывистость или полное отсутствие базальной мембраны
  31. Микроциркуляция – это… Определение, понятие, нарушения работы системы, причины, симптомы и лечение
  32. Уровни кровеносной системы
  33. Микроциркуляция: что это такое?
  34. Особенности строения
  35. Внутрисосудистые изменения
  36. Разрушение сосудистой стенки
  37. Внесосудистые нарушения
  38. Нарушение микрогемодинамики: диагностика
  39. Нарушение микрогемодинамики: лечение

СЕРДЕЧНО-СОСУДИСТАЯ СИСТЕМА сосуды микроциркуляторного русла

Значение микроциркуляторного русла

К микроциркуляторному руслу относят сосуды диаметром менее 100 мкм, которые видны лишь под микроскопом. Эта система мелких сосудов включает:

  • артериолы,
  • гемокапилляры,
  • венулы,
  • артериоловенулярные анастомозы.

Этот функциональный комплекс кровеносных сосудов, окруженный лимфатическими капиллярами, вместе с окружающей соединительной тканью обеспечивает: регуляцию кровенаполнения органов, транскапиллярный обмен (т.е.

трофическую, дыхательную, экскреторную функции), а также дренажно-депонирующую функцию.

Чаще всего элементы микроциркуляторного русла образуют густую систему анастомозов прекапиллярных, капиллярных и посткапиллярных сосудов.

Сосуды микроциркуляторного русла пластичны при изменении кровотока. Они могут депонировать форменные элементы или быть спазмированы и пропускать лишь плазму крови, изменять свою проницаемость для тканевой жидкости.

Артериальное звено микроциркуляторного русла

Артериальное звено микроциркуляторного русла включает артериолы и прекапилляры.

Артериолы

Это микрососуды диаметром 50-100 мкм. В артериолах сохраняются три оболочки, каждая из которых состоит из одного слоя клеток.

Внутренняя оболочка артериол состоит из эндотелиальных клеток с базальной мембраной, тонкого подэндотелиального слоя и тонкой внутренней эластической мембраны.

Средняя оболочка образована одним (реже двумя) слоями гладких мышечных клеток, имеющих спиралевидное направление.

В артериолах обнаруживаются перфорации в базальной мембране эндотелия и внутренней эластической мембране, благодаря которым осуществляется непосредственный тесный контакт эндотелиоцитов и гладких мышечных клеток.

Такие контакты создают условия для передачи информации от эндотелия к гладким мышечным клеткам.

В частности, при выбросе в кровь адреналина эндотелий синтезирует фактор, который вызывает сокращение гладких мышечных клеток.

Между мышечными клетками артериол обнаруживается небольшое количество эластических волокон. Наружная эластическая мембрана отсутствует. Адвентиция очень тонкая и сливается с окружающей соединительной тканью.

Прекапилляры (прекапиллярные артериолы, или метартериолы)

Это микрососуды диаметром около 15 мкм, отходящие от артериол, в стенке которых эластические элементы полностью отсутствуют.

Эндотелиоциты контактируют с гладкими мышечными клетками, которые располагаются поодиночке и образуют прекапиллярные сфинктеры в участке отхождения прекапилляров от артериолы и в месте разделения прекапилляра на капилляры. Прекапиллярные сфинктеры регулируют кровенаполнение отдельных групп капилляров.

В норме часть их тонически закрыта и открывается при нагрузке. Установлена ритмическая активность сфинктеров с периодом от 2 до 8 секунд. Между эндотелиальными и гладкомышечными клетками в прекапиллярах появляются особые клетки – перициты.

Капилляры

Кровеносные капилляры наиболее многочисленные и самые тонкие сосуды, общая протяженность которых в организме превышает 100 тыс. км. В большинстве случаев капилляры формируют сети, однако они могут образовывать петли, а также клубочки.

В обычных физиологических условиях около половины капилляров находится в полузакрытом состоянии. Просвет их сильно уменьшен, но полного закрытия его при этом не происходит.

Для форменных элементов крови эти капилляры оказываются непроходимыми, в то же время плазма крови продолжает по ним циркулировать.

Число капилляров в определенном органе связано с его общими морфофункциональными особенностями, а количество открытых капилляров зависит от интенсивности работы органа в данный момент.

Выстилка капилляров образована эндотелием, лежащим на базальной мембране. В расщеплениях базальной мембраны эндотелия выявляются особые отросчатые клетки – перициты, имеющие многочисленные щелевые соединения с эндотелиоцитами. Снаружи капилляры окружены сетью ретикулярных волокон и редкими адвентициальными клетками.

Характеристика эндотелия

Эндотелий выстилает сердце, кровеносные и лимфатические сосуды. Это однослойный плоский эпителий мезенхимного происхождения. Эндотелиоциты имеют полигональную форму, обычно удлиненную по ходу сосудов, и связаны друг с другом плотными и щелевыми соединениями. Общая масса всех эндотелиоцитов в организме человека – около 1 кг., а общая поверхность – более 1000 кв.м.

Цитоплазма эндотелиоцитов истончена до 0.2 – 0.4 мкм. и содержит большое количество транспортных пузырьков, которые могут образовывать трансэндотелиальные каналы. Органеллы немногочисленны, локализуются вокруг ядра. Для цитоскелета характерны виментиновые промежуточные филаменты.

В эндотелиоцитах обнаруживаются особые палочковидные структуры – тельца Вейбеля-Паладе, содержащие фактор VIII свертывающей системы крови.

В физиологических условиях эндотелий обновляется медленно.

Функции эндотелия:

  1. транспортная функция – через эндотелий осуществляется избирательный двусторонний транспорт веществ между кровью и другими тканями;
  2. гемостатическая функция – эндотелий играет ключевую роль в свертывании крови. В норме неповрежденный эндотелий образует атромбогенную поверхность.

    Эндотелий вырабатывает прокоагулянты и антикоагулянты;

  3. вазомоторная функция – эндотелий участвует в регуляции сосудистого тонуса, выделяет сосудосуживающие и сосудорасширяющие вещества;
  4. рецепторная функция – эндотелиоциты обладают рецепторами различных цитокинов и адгезивных белков; они экспрессируют на плазмолемме ряд соединений, обеспечивающих адгезию и последующую трансэндотелиальную миграцию лейкоцитов крови;
  5. секреторная функция – эндотелиоциты вырабатывают митогены, факторы роста, цитокины, регулирующие кроветворение, опосредующие воспалительные реакции;
  6. сосудообразовательная функция – эндотелий обеспечивает ангиогенез (как в эмбриональном развитии, так и при регенерации).

Второй вид клеток в стенке капилляров – перициты (клетки Руже). Эти соединительнотканные клетки имеют отростчатую форму и в виде корзинки окружают кровеносные капилляры, располагаясь в расщеплениях базальной мембраны эндотелия.

Третий вид клеток в стенке капилляров – адвентициальные клетки. Это малодифференцированные клетки, расположенные снаружи от перицитов. Они окружены аморфным веществом соединительной ткани, в котором находятся тонкие коллагеновые волокна. Адвентициальные клетки являются камбиальными полипотентными предшественниками фибробластов, остеобластов и жировых клеток.

Классификация капилляров

По структурно-функциональным особенностям различают три типа капилляров: соматический, фенестрированный и синусоидный, или перфорированный.

Наиболее распространенный тип капилляров – соматический. В таких капиллярах сплошная эндотелиальная выстилка и сплошная базальной мембраной. Капилляры соматического типа находятся в мышцах, органах нервной системы, в соединительной ткани, в экзокринных железах.

Второй тип – фенестрированные капилляры. Они характеризуются тонким эндотелием с порами в эндотелиоцитах. Поры затянуты диафрагмой, базальная мембрана непрерывна. Фенестрированные капилляры встречаются в эндокринных органах, в слизистой оболочке кишки, в бурой жировой ткани, в почечном тельце, сосудистом сплетении мозга.

Третий тип – капилляры перфорированного типа, или синусоиды. Это капилляры большого диаметра, с крупными межклеточными и трансцеллюлярными порами (перфорациями). Базальная мембрана прерывистая. Синусоидные капилляры характерны для органов кроветворения, в частности для костного мозга, селезенки, а также для печени.

Венозное звено микроциркуляторного русла: посткапилляры, собирательные венулы и мышечные венулы

Посткапилляры (или посткапиллярные венулы) образуются в результате слияния нескольких капилляров, по своему строению напоминают венозный отдел капилляра, но в стенке этих венул отмечается больше перицитов.

В органах иммунной системы имеются посткапилляры с особым высоким эндотелием, которые служат местом выхода лимфоцитов из сосудистого русла.

Вместе с капиллярами посткапилляры являются наиболее проницаемыми участками сосудистого русла, реагирующими на такие вещества, как гистамин, серотонин, простагландины и брадикинин, которые вызывают нарушение целостности межклеточных соединений в эндотелии.

Собирательные венулы образуются в результате слияния посткапиллярных венул. В них появляются отдельные гладкие мышечные клетки и более четко выражена наружная оболочка.

Мышечные венулы имеют один-два слоя гладких мышечных клеток в средней оболочке и сравнительно хорошо развитую наружную оболочку.

Венозный отдел микроциркуляторного русла вместе с лимфатическими капиллярами выполняет дренажную функцию, регулируя гематолимфатическое равновесие между кровью и внесосудистой жидкостью, удаляя продукты метаболизма тканей. Через стенки венул, так же как через капилляры, мигрируют лейкоциты. Медленный кровоток и низкое кровяное давление, а также растяжимость этих сосудов создают условия для депонирования крови.

Артериоло-венулярные анастомозы

Артериоловенулярные анастомозы (ABA) – это соединения сосудов, несущих артериальную кровь в вены в обход капиллярного русла. Они обнаружены почти во всех органах. Объем кровотока в анастомозах во много раз больше, чем в капиллярах, скорость кровотока значительно увеличена. ABA отличаются высокой реактивностью и способностью к ритмическим сокращениям.

Классификация. Различают две группы анастомозов: истинные ABA (или шунты), и атипичные ABA (или полушунты). В истинных анастомозах в венозное русло сбрасывается чисто артериальная кровь.

В атипичных анастомозах течет смешанная кровь, т.к. в них осуществляется газообмен. Атипичные анастомозы (полушунты) представляют собой короткий, но широкий, капилляр.

Поэтому сбрасываемая в венозное русло кровь является не полностью артериальной.

Первая группа – истинных анастомозов может иметь различную внешнюю форму — прямые короткие соустья, петли, ветвящиеся соединения. Истинные АВА подразделяются на две подгруппы: простые и сложные.

Сложные АВА снабжены специальными сократительными структурами, регулирующими кровоток. Сюда относят анастомозы с мышечной регуляцией, а также анастомозы т.н.

гломусного, или клубочкового, типа, – с особыми эпителиоидными клетками.

ABA, особенно гломусного типа, богато интернированы. ABA принимают участие в регуляции кровенаполнения органов, перераспределении артериальной крови, регуляции местного и общего давления крови, а также в мобилизации депонированной в венулах крови.

Некоторые термины из практической медицины:

  • гемангиобласт — зачаток клеток крови и кровеносных сосудов; возникает из части клеток мезенхимы зародыша;
  • гемангиома паукообразная — капиллярная гемангиома кожи в виде приподнятой над кожей красной точечной припухлости, от которой радиально отходят тонкие кровеносные сосуды;

 

Источник: https://morphology.dp.ua/_mp3/circulation3.php

Микроциркуляторное русло: его сосуды, строение, функции

Значение микроциркуляторного русла

Микроциркуляторное русло — это совокупность сосудов: артериола — капиллярная сеть — венула.

Это удивительно тонко и красиво устроенная система, живущая своей жизнью и подчиняющаяся своим законам. Тем законам, которые обеспечивают каждую клетку всем необходимым и удаляют из нее отходы и прочие не нужные и токсические вещества.

Все, абсолютно все, в этом содружестве мелких сосудов подчинено одной цели: произвести обмен наиболее быстро, наиболее качественно и так, как требует ситуация именно в этот момент.

Сосуды микроциркуляторного русла

В понятие микроциркуляторного русла входят следующие сосуды:

  • капилляры (капиллярная сеть)
  • артериолы (самые мелкие представители артериального кровеносного русла)
  • венулы (самые мелкие представители венозного кровеносного русла)

Капилляры — это самый важный в функциональном отношении участок кровеносной системы. Потому что именно здесь происходит обмен веществами между кровью и клеткой и между кровью и межклеточной жидкостью.

Мельчайшие артерии (артериолы) мельчайшие вены (венулы) активно регулируют капиллярный кровоток. Они чутко реагируют на потребности “своего” органа и, в зависимости от его потребностей, увеличивают или уменьшают количество крови, несущей органу питание.

Поэтому сосуды микроциркуляторного русла: артериолы, капиллярная сеть и венулы — это единая функциональная единица, подчиняющаяся своим, особенным законам и выполняющая общую работу в организме человека.

Сосуды микроциркуляторного русла устроены таким образом, что они соответствуют двум главным требованиям, необходимым для эффективного обмена:

  • кровь в капиллярной сети имеет возможность контактировать с очень большой площадью клеточного и межклеточного массива
  • соприкосновение это происходит в течение довольно продолжительного периода времени

Общее количество капилляров в теле человека составляет около 40 млрд. А общая эффективная поверхность обмена (капилляры и венулы) примерно равна 1000 квадратных метров.

Если предположить, что капилляры одинаково разбросаны по телу человека, то на 1 кубический миллиметр тела приходится примерно 600 капилляров. А на 100 г ткани приходится около 1,5 квадратных метра обменной поверхности этих сосудов.

Но в реальности количество капиллярных сосудов микроциркуляторного русла в разных органах и тканях существенно разнится. Например, на 1 мм кубический ткани сердечной мышцы приходится 2,5-3 тысячи капилляров. А на 1 мм кубический скелетных мышц – всего 300-400 капилляров. Это зависит от потребностей органа и его тканей в питании.

Строение русла микроциркуляции

Как я сказала выше, строение микроциркуляторного русла следующее: артериола — капиллярная сеть — венула.

Важными элементами этой системы есть прекапиллярные сфинктеры (клапаны), которые расположены на границе между артериолой и отходящим от нее капилляром.

Прекапиллярные сфинктеры представляют собой циркулярно расположенные клетки гладкой мускулатуры. Эти мышечные клетки охватывают сосуд и, сокращаясь, сжимают его.

Этим самым прекапиллярные сфинктеры могут увеличить (при расслаблении) или уменьшить (при сжатии) просвет сосуда.

Увеличив просвет сосуда, сфинктер увеличивает количество крови, протекающей через него. А уменьшив просвет, сфинктер уменьшает кровенаполнение капиллярной сети.

Таким образом, прекапиллярные сфинктеры регулируют поступление крови в капиллярную сеть. Именно поэтому И. М. Сеченов назвал артериолы “кранами сердечно-сосудистой” системы.

В строении микроциркуляторного русла есть еще одно замечательное звено: артериально-венозный шунт. Артериально-венозный шунт — это сосудистые веточки, напрямую (в обход капиллярной сети) соединяющие артериолы с венулами.

По этим шунтам кровь может сбрасываться из артериального русла в венозное, минуя капиллярную сеть.

Обмен веществ

и самая значительная функция микроциркуляторного русла — это обмен веществ между кровью и клеткой и между кровью и межклеточным пространством.

Регуляция потока крови

Но вот интересный вопрос: зачем нужно такое сложное строение микроциркуляторного русла, зачем нужны прекапиллярные сфинктеры и шунты? В чем состоит их функция?

Все дело в том, что нормальному органу в разные периоды нужно разное количество питания, а, значит, разное количество крови.

Одно дело, если орган не работает, находится в состоянии покоя, и совсем другое дело, если он занят интенсивной, тяжелой работой. Здесь и питание должно быть интенсивным, а значит, и потребность в крови, несущей это питание, резко возрастает.

Одна из функций микроциркуляторного русла состоит в регуляции потока крови, поступающего к клеткам органа в зависимости от потребностей этого органа в питании.

Как оно это делает? Очень просто!

Отдыхает орган и не нуждается в большом количестве питающей его крови — прекапилляры сжимаются и уменьшают просвет сосуда. При этом количество крови, протекающей через капиллярную сеть, уменьшается. Но куда же девается не использованная кровь? Она сбрасывается через шунты в венозное русло, минуя капиллярную сеть.

Если орган интенсивно работает и требует большого количества питательных элементов, прекапиллярные сфинктеры широко открываются. Они пропускают в капиллярную сеть большое количество крови, несущей питание. А сброс крови через шунты уменьшается или прекращается вовсе.

Централизация кровообращения

Еще одна функция микроциркуляторного русла — это централизация кровообращения.

В жизни организма бывают ситуации, при которых резко падает артериальное давление. Это может случиться по разным причинам. Например, при массивной кровопотере. Организм теряет большое количество крови, и все его органы начинают жестоко страдать от кислородного голодания.

В такой ситуации организм пытается спасти самые важные, жизненно важные органы. Те, без которых дальнейшая его жизнь не возможна. Что же он делает?

Он немедленно закрывает все прекапиллярные сфинктеры мышц, костей, кожи, подкожно-жировой клетчатки, желудочно-кишечного тракта и прочее. Кровь не поступает в капиллярную сеть этих органов, а сбрасывается через шунты в венозную сеть и устремляется к сердцу.

Но в головном и спинном мозге, в сердце, печени прекапиллярные сфинктеры остаются открытыми, и оставшаяся в организме кровь поступает в капиллярную сеть этих органов, продолжая питать их.

Таким образом, организм спасает самые важные органы, жертвуя органами менее значительными.

Конечно, так долго продолжаться не может. Но какое-то время организм все же выигрывает, что дает ему шанс “дожить” до медицинской помощи и реанимации.

У вас есть вопросы?

Вы можете задать их мне вот здесь, или кардиологу, заполнив форму, которую вы видите ниже.

Источник: https://medforyour.info/html/mikrocirkulyatornoe-ruslo.html

Анатомия сердечно-сосудистой системы

Значение микроциркуляторного русла

Функции ССС:

  1. Транспортная – кровь от сердца к органам и тканям и обратно к сердцу.
  2. Обменная — обмен между кровью и тканями на периферии в капиллярах.
  3. Интегративная функция — обеспечивается гормонами в составе желез, они объединяют все органы и системы в единое целое – гуморальная интеграция (помимо нервной интеграции).
  4. Иммунная — лимфоциты и их производные

на новости сайта в соцсетях!

Пожалуйста, примите участие в опросах по оценке качества сайта. Важен каждый голос!

2. Строение и функция большого круга кровообращения

Большой круг кровообращения (24 секунды):

Левый желудочек => аорта => органы и ткани => нижняя и верхняя полая вены => правое предсердие.

Функция – доставка артериальной крови и обеспечение питательными веществами органов и тканей.

3. Строение и функция малого круга кровообращения

Легочный круг кровообращения (4 секунды):

Правое предсердие => легочный ствол => правая и левая легочная артерия => дихотомическое деление на долевые => сегментарные => субсегментарные артерии => артериолы => капилляры =>  4 легочные вены => левое предсердие.

Функция — обогащение крови кислородом.

4. Из каких отделов состоит кровеносное сосудистое русло. Значение каждого из них

ССС состоит из:

  • Сердца,
  • Кровеносных сосудов

Сердце – центральный орган, является нагнетательно-присасывательным насосом. Кровеносные сосуды образуют два круга кровообращения (артерии, МОЦ русло, вены)

5. Значение артерий. Строение стенок крупных, средних и мелких артерий

Артерии — ток крови центробежно на периферию.

Стенки сосудов имеют трехслойную конструкцию:

1) Tunica intima

  • Изнутри выстлана эндотелиоцитами – постоянное ламинарное течение крови (благодаря сплошному, гладкому покрытию).
  • Каждый эндотелиоцит вырабатывает БАВ (регуляция тонуса сосудов, вязкость, свертываемость крови).

2) Tunica media

Части:

  • гладкая мышечная ткань (регуляция просвета сосудов),
  • соединительная ткань — эластические и коллагеновые волокна (плотность —сосуды не расширяются).

3) Tunica externa (адвентиция)

  • Образуется РВСТ,
  • Прикрепляет сосуды РСТ подвижно,
  • Проходят nervi vasorum,
  • Проходят vasa vasorum — отток лимфы, питание средней и наружной оболочек.

При нарушении vasa vasorum – облитерирующий эндартериит (замещение сдтк)

По строению средней стенки — три группы артерий:

1) Эластического типа

  • Преобладают эластические волокна,
  • Стенки толстые около 15% наружного диаметра на стенку,
  • Общая сонная артерия, общая подвздошная артерия, аорта, подключичная артерия, легочной ствол.

2) Мышечного типа

  • Преобладает ГМТ,
  • Могут значительно суживаться.

Делятся на:

  • Органные артерии (желудок, кишечник). Регуляция поступления крови к органам в зависимости от функциональной активности.
  • Артерии сердца и ГМ — замыкательные —при сокращении средней оболочки, просвет может полностью закрыться.

3) Смешанного типа

  • Одинаковое количество мышечной ткани и эластических волокон,
  • Магистральные артерии (подмышечная, бедренная и их ветви).

6. Значение микроциркуляторного русла. Из каких звеньев оно состоит?

Микроциркуляторное русло – ток жидкости по микро каналам.

Три вида микроциркуляции:

  1. Крови – по микрокровеносным сосудам.
  2. Лимфы – по микролимфатическим сосудам.
  3. Тканевой жидкости – по тканевым щелям (обменные процессы не идут в сухом месте).

Микроциркуляторное русло состоит из 5 звеньев:

  • артериолы,
  • прекапилляры,
  • капилляры,
  • посткапилляры,
  • венулы.

7. Строение стенки и назначение артериол и прекапилляров

Артериолы:

  • От самых мелких артерий мышечного типа.
  • Диаметр 20-25 мкм.
  • ГМТ в артериолах располагается в один слой (отличие от артерий мышечного типа).
  • Функция: доставка крови в микро регион.

Артериолы делятся на прекапилляры:

  • Гладко-мышечные клетки расположены в начале отхождения от артериолы (регуляция обмена) – сфинктер.
  • Диаметр 15 мкм.
  • Функция: регуляция наполняемости своих кровеносных капилляров.

8. Строение стенки и назначение капилляров

Прекапилляры делятся на капилляры:

  • Состоят из артериального и венозного сегментов,
  • Стенки очень тонкие,
  • Диаметр 7 мкм,
  • Функция: обменные процессы между кровью и тканью.

Площадь обменной поверхности 1000м2

По функции капилляры:

  • Открытые (≥ 7 мкм),
  • Плазматические (≤ 2 мкм) — проникает тольк плазма, количество увеличивается в покое,
  • Закрытые – количество со временем уменьшается и они исчезают.

По проницаемости стенок — 2 варианта:

  • Хорошо проницаемые (синусоиды) – пропускают крупные молекулы и клетки.
  • Избирательно проницаемые (барьерного типа).

9. Строение стенок и назначение посткапилляров и венул

Посткапилляры:

  • Диаметр 30мкм,
  • Стенка тонкая (как у капилляра), но в стенках больше перицитов (соед.тк.),
  • Функция: обменные процессы,Это начало венозного звена, кровь идет центростремительно.

Посткапиляры сливаются в венулы:

  • Диаметр 50 мкм,
  • Стенки толще (больше сдтк клеток, больше мышечная оболочка),
  • Функция: отток венозной крови из микрорегиона.

10. Что относится к приспособительным механизмам кровеносного микроциркулятрного русла?

Приспособительные механизмы — регуляция интенсивности капиллярного транспорта в соответствии с необходимом количеством к органу. Ток крови через кровеносные капилляры – транскапиллярный, но если орган в покое, то ↓

Посткапиллярный (юкстакапиллярный) кровоток:

  • Прекапиллярный сфинктер (регуляция наполняемости кровеносных капилляров),
  • Артериоловенулярные анастомозы (т.к. капилляры закрыты в покое).

Разделы с похожими страницами

Источник: https://medfsh.ru/teoriya/teoriya-po-anatomii/voprosy-po-anatomii/anatomiya-serdechno-sosudistoj-sistemy

Структурные и функциональные особенности компонентов микроциркуляторного русла

Значение микроциркуляторного русла

Основной функцией микроциркуляторной системы является обеспечение местного кровоснабжения и транскапиллярного обмена. По функциональным признакам в микроциркуляторной системе различают начальный отдел системы, отдел притока, который в свою очередь разделяют на следующие звенья:

  • 1) звено генерации давления кровотока;
  • 2) звено передачи вдоль транспортного канала;
  • 3) звено функционального распределения крови;
  • 4) звено местного (транскапиллярноного) обмена и кровоснабжения органа; конечный отдел микроциркуляторной системы обеспечивает возврат крови (емкостный отдел).

Каждый отдел функциональной единицы микроциркуляторного русла имеет свои структурные и функциональные особенности.

1. Приносящие микрососуды. Это первый компонент микроциркуляторного русла. К нему относятся артериолы, терминальные артериолы, прекапиллярные сфинктеры и метартериолы, прекапилляры.

Артериолы — сосуды диаметром от 30 до 200 мкм.

Эндотелиальная выстилка образована истонченными эндотелиальными клетками, соединяющимися путем черепицеобразного наложения и располагающимися на базальной мембране.

За ней следует слой основного вещества с немногочисленными коллагеновыми и эластическими волокнами; местами обнаруживается внутренняя эластическая мембрана, прерывистость которой обусловлена наличием люков.

Гладкомышечный слой состоит из 2—3 слоев гладкомышечных клеток, имеющих различную ориентацию.

Контакт между ними осуществляется за счет краевых цитоплазматических выпячиваний (nexus), которые обеспечивают распространение возбуждения от одной клетки на другую, а также обмен веществ между ними (Gilula et al., 1972). Такие контакты мышечные клетки образуют между собой внутри одного и между несколькими слоями.

Адвентициальный слой представлен элементами рыхлой соединительной ткани. Границу сосудистой стенки составляет почти непрерывный слой фибробластов.

Терминальные артериолы диаметром 50—150 мкм имеют строение, аналогичное тому, что описано для всех артериол, однако их структурной особенностью является наличие лишь одного слоя ориентированных по спирали гладкомышечных клеток, а также увеличение числа контактов между ними, отсутствие эластической мембраны и появление миоэндотелиальных контактов, образованных цитоплазматическими выпячиваниями эндотелия. Эти связи послужили основанием для предположения о существовании обмена веществ между эндотелиальными и гладкомышечными клетками и рецепторной функцией эндотелия.

Прекапиллярные сфинктеры расположены в местах отхождения от терминальных артериол метартериол или непосредственно капилляров.

Прекапиллярные сфинктеры представляют собой структуру, образованную двумя гладкомышечными клетками, расположенными друг против друга в месте отхождения от метартериолы прекапиллярной артериолы.

В этой зоне имеется утолщение эндотелиальных клеток, выбухающих в просвет сосуда, что приводит к ограничению его просвета. Миоэндотелиальные контакты здесь весьма часты.

Метартериолы — сосуды диаметром 7—15 мкм с прерывистым слоем гладкомышечных клеток. По своей структуре они значительно приближаются к капиллярам.

2. Обменные микрососуды — капилляры. Капиллярная стенка микроциркуляторной сети различных областей имеет общий трехслойный тип строения; она представлена слоем эндотелиальных клеток, базальной мембраной с перицитами и адвентициальным перикапиллярным слоем.

Но ультраструктура капилляров в различных органах имеет ряд существенных отличий. Эти отличия в основном касаются эндотелия и базальной мембраны, т. е. элементов, определяющих проницаемость и транскапиллярный обмен.

По структуре эндотелия и базальных мембран различают три основных типа обменных сосудов, что имеет большое значение при анализе ультраструктурных основ проницаемости сосудов.

Тип III — синусы и синусоиды. Их особенностью является эндотелий с широкими межклеточными щелями, каналами или промежутками и прерывистость или полное отсутствие базальной мембраны

Выделение трех основных типов капилляров не отражает всего многообразия их строения, тем более что в одном органе возможно существование различных типов капилляров, и состояние капиллярной стенки в значительной степени связано с активной деятельностью эндотелиальной поверхности и действием различных биологически активных веществ, выделяемых тучными клетками, базофилами и образующихся в тканях как в норме, так и при патологии.

Ранее были описаны основные нейрогенные и миогенные механизмы регуляции сосудистого тонуса, в том числе и сосудов микроциркуляторного русла. Дополнительно рассмотрим некоторые особенности регуляторных механизмов, характерных только для микрососудов.

Характерной особенностью микроциркуляторных сосудов является прерывистость движения крови в отдельных капиллярах, что, по-видимому, обусловливает оптимальные условия тканевого гомеостаза. Это в значительной мере связано с вазомоциями, т. е.

спонтанным периодическим сужением и расширением просвета «прекапиллярных сфинктеров» и метартериол. Фазы сокращения и расслабления длятся от нескольких секунд до нескольких минут. Фаза дилатации более продолжительна.

Вазомоции обусловлены сосудистой реактивностью и сократимостью, изменяющимися под влиянием общего тканевого метаболизма и связанного с ним освобождения гуморальных медиаторов и вазоактивных метаболитов.

Вазомоции сохраняются и после выключения нервной регуляции с определенным ритмом, обусловленным характером функции сосудов при данных условиях. Ритм вазомоции обеспечивает ауторегуляцию микроциркуляторной системы за счет спонтанной активности гладкомышечных клеток сосудов.

В условиях физиологии и патологии отмечается широкий диапазон изменений количества функционирующих капилляров. Число открытых капилляров определяет функциональную емкость капиллярного русла, а следовательно, и величину объемного кровотока и транскапиллярного обмена. Количество капилляров у человека около 2 млрд., а общая протяженность — 8000 км.

Количество функционирующих капилляров является весьма динамичным показателем. Оно определяется деятельностью прекапиллярных сфинктеров, функция которых контролируется по принципу обратной связи тканевыми метаболитами.

В условиях покоя мышечный тонус прекапиллярных сфинктеров высокий и значительная часть капилляров не перфузируется.

При активной функции ткани или органа образуются метаболиты, которые вызывают расширение прекапиллярного сфинктера, кровоток увеличивается, раскрывается и перфузируется большое число капилляров.

Изучение тонкого биохимического ауторегуляторного механизма, обеспечивающего состояние прекапиллярного сфинктера, позволило сделать предположение о важной роли метаболической ауторегуляции актомиозина гладких мышц прекапиллярных сфинктеров при помощи АТФ и АМФ.

Количество функционирующих капилляров, возможно, зависит и от величины венозного посткапиллярного оттока, так как повышение сопротивления току крови в капиллярах может лимитировать поступление в них крови.

Таким образом, количество активных капилляров определяется соотношением артериального и венозного давления на уровне устья прекапиллярного сфинктера. Чем больше различие между ними, тем большее количество капилляров функционирует.

Количество открытых капилляров регулируется не только гемодинамическими факторами, но и различными факторами местной среды, нейромедиаторами и гормонами, однако преимущественное воздействие этих гуморальных факторов непрямое — через гладкомышечные клетки пре- и посткапиллярных микрососудов. Однако возможно и прямое их влияние на капиллярную стенку с активным изменением просвета капилляров путем воздействия на контрактильный аппарат эндотелиальных клеток, коллоиды и другие структуры сосудистой стенки.

3. Отводящие сосуды, венозные микрососуды представлены посткапиллярными венулами, коллекторными (собирательными) венулами и мелкими венами.

Посткапиллярные венулы имеют чрезвычайно истонченный эндотелий, прерывистый слой перицитов заключен в листке базальной мембраны, адвентициальный слой достаточно рыхлый с отдельными фибробластами и волоконными элементами. Этот отрезок микроциркуляторного русла по существу является диффузионным отделом системы микроциркуляции.

Коллекторные (емкостные) венулы характеризуются более оформленным адвентициальным слоем и утолщением эндотелия. Они выполняют емкостную (коллекторную) функцию венозного отдела системы микроциркуляции. В более крупных коллекторных вену-лах появляются элементы мышечного слоя; эти крупные венулы затем переходят в мелкие вены.

В системе отводящих емкостных сосудов происходит нарастающее увеличение просвета. Большая емкостная подвижность коллекторной сети является одной из основ автоматического регулирования уровня капиллярной фильтрации в физиологических условиях и играет важную роль в развитии патологии микроциркуляции.

Источник: https://stomekspert.ru/strukturnye-i-funkcionalnye-osobennosti-komponentov-mikrocirkulyatornogo-rusla.html

Микроциркуляция – это… Определение, понятие, нарушения работы системы, причины, симптомы и лечение

Значение микроциркуляторного русла

Все системы, органы и ткани организма функционируют благодаря получению энергии АТФ, которая, в свою очередь, может образовываться в достаточном количестве при наличии кислорода. Как же кислород попадает в органы и ткани? Он переносится при помощи гемоглобина по кровеносным сосудам, которые образуют в органах систему микроциркуляции или микрогемодинамики.

Уровни кровеносной системы

Условно все кровоснабжение органов и систем организма можно подразделить на три уровня:

  1. Системное кровообращение – образовано крупными сосудами, которые обеспечивают перемещение крови по всему организму.
  2. Органное кровообращение – образовано сосудами среднего диаметра, которые обеспечивают кровоснабжение отдельных органов в зависимости от их потребности в кислороде. Например, головной мозг снабжается кровью очень обильно, так как нуждается в большом количестве энергии, а следовательно, и в кислороде.
  3. Микроциркуляция – включает в себя наиболее мелкие сосуды, которые находятся в непосредственном контакте с клетками и тканями.

Микроциркуляция: что это такое?

Микроциркуляция – это передвижение крови по микроскопической, то есть мельчайшей, части сосудистого русла. Выделяют пять типов сосудов, которые входят в ее состав:

  • артериолы;
  • прекапилляры;
  • капилляры;
  • посткапилляры;
  • венулы.

Что интересно, не все сосуды этого русла функционируют одновременно. Пока некоторые из них активно работают (открытые капилляры), другие находятся в “спящем режиме” (закрытые капилляры).

Регуляция передвижения крови по мельчайшим кровеносным сосудам осуществляется сокращением мышечной стенки артерий и артериол, а также работой специальных сфинктеров, которые расположены в посткапиллярах.

Особенности строения

Микроциркуляторное русло имеет разное строение, в зависимости от того, в каком органе оно находится.

Например, в почках капилляры собраны в клубочек, который образуется из приносящей артерии, а из самого клубочка капилляров после образуется выносящая артерия. Причем диаметр приносящей в два раза больше, чем выносящей. Такое строение необходимо для фильтрации крови и образования первичной мочи.

А в печени находятся широкие капилляры, называемые синусоидами. В эти сосуды из воротной вены поступает и насыщенная кислородом артериальная, и бедная им венозная кровь. Специальные синусоиды присутствуют и в костном мозге.

Внутрисосудистые изменения

Замедление тока крови в сосудах, которое может проявляться как при специфических заболеваниях, тромбоцитопатиях (нарушении функции тромбоцитов) и коагулопатиях (нарушении свертывания крови), так и при патологиях, которые могут встречаться при разнообразных заболеваниях организма. К таким состояниям относятся агрегация эритроцитов и сладж-синдром. По сути, эти два процесса являются последовательными стадиями одного феномена.

Сначала происходит временное прикрепление эритроцитов при помощи поверхностных контактов в виде столбика (агрегация эритроцитов). Такое состояние обратимо и обычно носит кратковременный характер. Однако прогрессирование его может привести к прочному склеиванию (адгезии) кровяных телец, что уже является необратимым.

Такая патология носит название сладж-феномена. Это приводит к замедлению и полному прекращению тока крови в сосуде. Обычно закупориваются венулы и капилляры. Обмен кислорода и питательных веществ останавливается, что в дальнейшем вызывает ишемию и некроз тканей.

Разрушение сосудистой стенки

Нарушение целостности стенки сосуда может возникать как при патологических состояниях всего организма (ацидоз, гипоксия), так и при непосредственном повреждении стенки сосуда биологически активными агентами. В роли таких агентов выступают медиаторы воспаления при васкулитах (воспалении сосудистой стенки).

Если повреждение прогрессирует, отмечается просачивание (диапедез) эритроцитов из крови в окружающие ткани и образование кровоизлияний.

Внесосудистые нарушения

Патологические процессы в организме могут влиять на сосуды микроциркуляции двумя путями:

  • Реакцией тканевых базофилов, которые выбрасывают в окружающую среду биологически активные агенты и ферменты, непосредственно влияющие на сосуд и сгущающие кровь в сосудах.
  • Нарушением транспорта тканевой жидкости.

Таким образом, микроциркуляция – это сложная система, которая находится в постоянном взаимодействии со всем организмом. Необходимо знать не только основные виды ее нарушений, но и методы диагностики и лечения этих заболеваний.

Нарушение микрогемодинамики: диагностика

В зависимости от пораженного органа могут использоваться различные методы инструментальной диагностики, которые косвенно могут указать на наличие нарушений микроциркуляции через патологию внутреннего органа:

  • электрокардиограмма, эхокардиограмма, коронарография (миокард);
  • УЗИ сосудов головы и шеи, доплерография, ангиография (головной мозг);
  • УЗИ, скорость клубочковой фильтрации, экскреторная урография (почки);
  • УЗИ, ангиография, капилляроскопия, флебография (нижние конечности).

Нарушение микрогемодинамики: лечение

Для улучшения микроциркуляции применяется группа препаратов, называемая ангиопротекторами. Это высокоэффективные лекарственные средства, улучшающие ток крови по сосудам и восстанавливающие сам сосуд. Их основные свойства таковы:

  • уменьшение спазма артерий;
  • обеспечение проходимости сосуда;
  • улучшение реологии (вязкости) крови;
  • укрепление сосудистой стенки;
  • противоотечный эффект;
  • улучшение метаболизма, то есть обмена веществ, в сосудистой стенке.

К основным препаратам, улучшающим микроциркуляцию, относятся следующие:

  • “Троксевазин”;
  • “Детралекс”;
  • “Трентал”;
  • “Эмоксипин”;
  • “L-лизина эсцинат”.

Можно сделать вывод, что, несмотря, на свой небольшой размер и диаметр, сосуды микрогемодинамики выполняют очень важную функцию в организме. Поэтому микроциркуляция – это самодостаточная система организма, состоянию которой можно и нужно уделять особое внимание.

Источник: https://FB.ru/article/399457/mikrotsirkulyatsiya---eto-opredelenie-ponyatie-narusheniya-rabotyi-sistemyi-prichinyi-simptomyi-i-lechenie

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: