Зависимость интенсивности фотосинтеза от освещенности

Содержание
  1. Как влияют внешние факторы на процесс фотосинтеза
  2. Температура
  3. воды в растении
  4. Агротехнические приемы
  5. Презентация на тему: Влияние на фотосинтез интенсивности и спектрального состава света
  6. Слайд 2
  7. Слайд 3
  8. Слайд 4
  9. Слайд 5
  10. Слайд 6
  11. Слайд 7
  12. Слайд 8
  13. Слайд 9
  14. Слайд 10
  15. Слайд 11
  16. Слайд 12: Почему именно красные лучи наиболее эффективны для фотосинтеза?
  17. Слайд 13
  18. Слайд 14
  19. Слайд 15
  20. Последний слайд презентации: Влияние на фотосинтез интенсивности и спектрального состава света: Спасибо за внимание!
  21. Спектры в агрофотонике
  22. Основы
  23. О спектрах 
  24. Ультрафиолет C (280 –  315 нм)
  25. Ультрафиолет B (315-  380 нм)
  26. Ультрафиолет A (380 –  430 нм)
  27. Синий свет (430-450 нм)
  28. Зеленый свет (500-550 нм)
  29. Оранжевый свет (550-610 нм)
  30. Красный (610-720 нм)
  31. Дальний красный (720-1000 нм)
  32. Инфракрасный  (1000 нм и выше)
  33. Потребности растения на разных этапах роста
  34. Синтез хлорофилла
  35. Цветение
  36. Светодиоды
  37. Заключение
  38. Список литературы

Как влияют внешние факторы на процесс фотосинтеза

Зависимость интенсивности фотосинтеза от освещенности

Чтобы ответить на вопрос, как влияют внешние факторы на процесс фотосинтеза, необходимо знать, что к числу внешних факторов, относятся: свет, температура, концентрация углекислого газа в воздухе и водоснабжение растения. Влияние внешних факторов на процесс фотосинтеза в растениях. Интенсивность света оказывает большое влияние на процесс фотосинтеза.

С повышением интенсивности света ускоряется и фотосинтез, но прямой пропорциональной зависимости между интенсивностью света и фотосинтезом не наблюдается. Зависимость фотосинтеза от количества света будет у разных растений неодинакова. Зависимость фотосинтеза от интенсивности света у светолюбивых и теневыносливых растений.

По отношению к интенсивности света растения разделяют на 2 группы: светолюбивые и теневыносливые. Первые хорошо растут на открытых местах, при ярком свете, вторые — в тени.Эти растения отличаются и по интенсивности фотосинтеза: у светолюбивых растений фотосинтез возрастает при увеличении освещения, у теневыносливых остается на одном уровне.

У теневыносливых растений максимальный фотосинтез протекает при меньшей освещенности по сравнению со светолюбивыми.Светолюбивые и теневыносливые растения различаются как по анатомическому строению, так и по физиологическим признакам.

Листья светолюбивых растений имеют более толстую листовую пластинку, хорошо развитый мезофилл, несколько слоев столбчатой паренхимы, более толстый слой кутикулы, больше устьиц и большее количество проводящих пучков, подробнее: (Процесс фотосинтеза в листьях растений). Клетки у них мелкие, хлоропласты тоже. Кроме того, они содержат меньше хлорофилла, чем теневыносливые растения.

У теневыносливых растений листовая пластинка тонкая, один слой столбчатой паренхимы, сеть жилок слабо развита, устьиц немного. Клетки этих растений крупные, хлоропласты тоже.Данные по количеству хлорофилла у светолюбивых и теневыносливых растений приведены в таблице.

хлорофилла (в г /кг сырого веса) в зависимости от условий освещения

Растение хлорофилла
на светупри недостатке света
Лиственница1,770,06
Сосна2,240,47
Ель3,891,28

Из данных таблицы видно, что у ели — теневыносливого растения— на свету содержание хлорофилла в 2 раза выше, чем у светолюбивой лиственницы.При недостатке света разница в содержании хлорофилла у ели и лиственницы возрастает в 21 раз. Все особенности в строении листьев у светолюбивых растении имеют приспособительный характер.Так, большое количество устьиц, хорошая проводящая система и повышенная транспирация не позволяют листьям перегреваться на ярком свету и способствуют быстрой подаче к ним воды.Особенности строения листьев у теневыносливых растений вполне обеспечивают их нормальный рост при относительно слабом освещении.Большое количество хлорофилла дает возможность теневыносливым растениям осуществлять процесс фотосинтеза при малой интенсивности света. Если же теневыносливые растения перенести на яркий свет, то они быстро погибают, так как высокое содержание хлорофилла приводит к большому поглощению света, в результате чего резко возрастает транспирация, однако из-за слабо развитой проводящей системы вода в листья поступает медленно.Светолюбивые и теневыносливые растения отличаются и по положению компенсационной точки, т. е. той интенсивности света, при которой образование органического вещества при фотосинтезе равно его трате на дыхание.Теневыносливые растения характеризуются низкой интенсивностью дыхания и повышенной интенсивностью фотосинтеза при слабой освещенности, поэтому точка компенсации у них расположена ниже.Накопление органического вещества у этих растений идет при низкой интенсивности света, при которой у светолюбивых растений вследствие интенсивного дыхания еще не наступила точка компенсации. Светолюбие и тенелюбие растений изменяется в зависимости от места произрастания растений.Изменение светолюбия растений в связи с географической широтой зависит не только от света, но и от температуры и водоснабжения.Листья растения хорошо приспосабливаются к условиям освещения. Так, в кроне дерева всегда есть листья светового типа, расположенные на периферии, и листья теневого типа, находящиеся на ее затененной стороне.Растения можно выращивать при искусственном освещении, используя электрический свет. Однако в этом случае они приобретают признаки этиоляции: электрический свет имеет недостаточное количество сине-фиолетовых лучей, влияющих на формообразовательные процессы. Искусственное освещение.В последнее время предложены различные лампы, которые дают свет, содержащий необходимое количество синих и фиолетовых лучей. Для нормального роста светолюбивых растений достаточно освещенности в 10— 15 тыс. люксов, которой можно достигнуть и при искусственном освещении.

Температура

Температура оказывает большое влияние на процесс фотосинтеза. При повышении температуры на 10° интенсивность фотосинтеза примерно удваивается. Усиление фотосинтеза, однако, происходит только до температуры 30—35°, дальнейшее повышение ее приводит к уменьшению фотосинтеза, и при 40—45° он прекращается. Зависимость фотосинтеза от температуры.

У многих растений наиболее интенсивный фотосинтез наблюдается при 20—25° (рис. 31).По представлению Ф. Блэкмана, форма кривой изменения интенсивности фотосинтеза с повышением температуры обусловлена тем, что наряду с прогрессивным ускорением химических реакций при повышении температуры возникают процессы, угнетающие фотосинтез (инактивация хлоропластов).

К числу внешних факторов, влияющих на интенсивность фотосинтеза, относится и содержание углекислого газа в атмосфере. В среднем в атмосфере содержится 0,03% углекислого газа по объему, и содержание его в атмосфере почти не изменяется: дефицит быстро выравнивается поступлением СО2 из почвы в результате жизнедеятельности микроорганизмов.

При увеличении количества углекислого газа в атмосфере фотосинтез возрастает, но прямой пропорциональности между содержанием углекислого газа и фотосинтезом не наблюдается.Фотосинтез устойчиво увеличивается при повышении содержания углекислого газа до 0,06%, а при значительной интенсивности света и при 1,5—2,0%.

В производственных условиях в теплицах и оранжереях в утренние часы, когда фотосинтез идет интенсивно, содержание углекислого газа быстро падает ниже нормы (0,03%) и растения голодают.Поэтому в условиях закрытого грунта уже вошло в практику повышать содержание углекислоты до 1—2%.

Однако повышение концентрации углекислого газа неэффективно при слабой интенсивности света, так как углекислый газ не успевает перерабатываться в листьях в органические соединения и действует токсически.При повышении интенсивности света с одновременным увеличением количества углекислого газа возрастает и интенсивность фотосинтеза.

воды в растении

Громадное значение для протекания и интенсивности фотосинтеза имеет содержание воды в растении и условия его водоснабжения, поскольку из воды и углекислого газа синтезируются органические вещества и коллоиды цитоплазмы должны быть насыщены водой.

При недостатке воды закрываются устьица, в результате замедляется процесс проникновения углекислого газа в лист, а это, в свою очередь, приводит к уменьшению фотосинтеза. Значение воды для фотосинтеза.

При недостаточном водоснабжении подсыхают оболочки клеток мезофилла, граничащие с межклеточниками, что задерживает передвижение углекислого газа к хлоропластам. Вода необходима также и для нормальной работы ферментов, участвующих в процессе фотосинтеза, а в дальнейшем для переработки его продуктов.

Временное подвядание растений неблагоприятно влияет на интенсивность фотосинтеза; при этом оно сказывается тем дольше и сильнее, чем длительнее было обезвоживание.

При недостатке воды задерживается отток образовавшихся продуктов из листа в стебель и корень растения, что тоже тормозит процесс фотосинтеза, от температуры.Избыточное увлажнение, в результате которого могут закрываться устьица, также отрицательно сказывается на интенсивности фотосинтеза: углекислый газ не может проникнуть внутрь листа.

Агротехнические приемы

Для усиления процесса фотосинтеза, а следовательно, получения высоких урожаев разработаны агротехнические приемы. Большое значение имеют густота стояния растений и направление рядков. При сильно загущенных посевах снижается освещенность отдельных растений, что может привести к уменьшению фотосинтеза.

Для светолюбивых растений необходимо применять широкорядные посевы, обеспечивающие хорошую освещенность растений. В этом случае усиление процесса фотосинтеза связано не только с лучшей освещенностью растений, но и с большей площадью их питания. Ряды посевов.В целях лучшего использования света растениями важное значение имеет и направление рядков.

В условиях северо-западной зоны лучше располагать рядки с севера на юг, а на юге — с запада на восток.Для получения высоких урожаев растения нужно обеспечить и углекислым газом.

Внесением в почву навоза, торфа и других органических веществ обогащают надземный слой воздуха углекислым газом, который выделяется из почвы при разложении микроорганизмами органических веществ.Почвы, богатые перегноем, ежедневно выделяют до 100—250 кг СО2 на 1 га. Кроме того, внесение органических удобрений улучшает структуру почвы.

В районах с развитой промышленностью углекислый газ, являющийся отходом производства, может быть также использован для обогащения воздуха над посевами. В этом случае его подают на близлежащие поля по трубам.

Дополнительное питание растений углекислым газом особенно необходимо при выращивании растений в условиях закрытого грунта — в теплицах и оранжереях, где часто в полуденные часы СО2 почти отсутствует. При выращивание в теплицах и оранжереях необходимо дополнительное питание растений углекислым газом.

В этом случае обогащение воздуха СО2 увеличивает урожай в 2—2,5 раза.При выращивании растений в условиях закрытого грунта приходится прибегать к дополнительному освещению, особенно в пасмурные дни и в зимнее время.

Свет мощных ламп накаливания может вызвать перегрев растений, поэтому между источником света и растениями ставят водные экраны для поглощения избытка тепловых — инфракрасных — лучей.Поэтому для выращивания растений стали применять люминесцентные лампы — лампы холодного света.

При полном отсутствии солнечного света интенсивность освещения должна быть 50—100 тыс. эрг на 1 кв. см в 1 секунду. Для досвечивания достаточно 50 эрг на 1 кв. см в 1 секунду.Выращивание растений на искусственном освещении называется светокультурой. Для нормального роста растений в условиях светокультуры необходимо, кроме света, обеспечить их углекислым газом, минеральным питанием и правильно снабжать водой.Светокультуры имеют большое значение для ранней выгонки зеленных культур, выращивания рассады, томатов, огурцов, редиса, а также для быстрого получения сеянцев древесных пород декоративного садоводства.Используя светокультуры можно снабжать население свежими овощами в течение круглого года.

Источник: https://LibTime.ru/agro/kak-vliyayut-vneshnie-faktory-na-process-fotosinteza.html

Презентация на тему: Влияние на фотосинтез интенсивности и спектрального состава света

Зависимость интенсивности фотосинтеза от освещенности

Выполнили студентки 3 курса ЭБФ Серкова Александра и Андреева ЮлияПетрозаводск 2016

Изображение слайда

Изображение для работы со слайдом

2

Слайд 2

Растения приспособились к произрастанию в различных условиях освещенности, по этому признаку растения разделены на группы: светолюбивые, теневыносливые и тенелюбивые.

При сильном освещении лист толще и клетки его палисадной паренхимы длиннее, чем у листа, выращенного в затененных условиях. Поведение хлоропластов также зависит от мощности светового потока.

На ярком свету хл концентрируются на поперечных стенках клетки, при затененных они располагаются равномернее.

Изображение слайда

Изображение для работы со слайдом

3

Слайд 3

В среднем листья поглощают 80 — 85% энергии фотосинтетически активных лучей солнечного спектра (400 — 700 нм) и 25 % энергии инфракрасных лучей, что составляет около 55% от энергии общей радиации. На фотосинтез расходуется 1,5 — 2% поглощенной энергии (фотосинтетически активная радиация — ФАР).

Изображение слайда

Изображение для работы со слайдом

4

Слайд 4

Зависимость скорости фотосинтеза от интенсивности света имеёт форму логарифмической кривой.Рис.1. Зависимость скорости фотосинтеза от интенсивности света у кукурузы

Изображение слайда

Изображение для работы со слайдом

5

Слайд 5

Фотосинтез начинается при очень слабом освещении1880 – Фаминцын показал это на установке с искусственным освещением. Света керосиновой лампы оказалось достаточно для начала фотосинтеза и образования крахмала в растительных клетках.

У многих светолюбивых растений максимальная (100%) интенсивнос ть фотосинтеза наблюдается при освещенности, достигающей половины от полной солнечной, которая, таким образом, является насыщающей.

Дальнейшее возрастание освещенности не увеличивает фотосинтез и затем снижает его.

Изображение слайда

Изображение для работы со слайдом

Изображение для работы со слайдом

6

Слайд 6

Чем выше кривая в области насыщения интенсивности света, тем мощнее аппарат поглощения и восстановления С02.

У светолюбивых растений насыщение достигается при значительно большей освещенности, чем у теневыносливых.

У теневыносливого печеночного мха маршанции световое насыщение фотосинтеза достигается при 1000 лк, у светолюбивых древесных — при 10 — 40 тыс. лк, а у высокогорных растений Памира— при 60 тыс. лк и выше.

Изображение слайда

Изображение для работы со слайдом

Изображение для работы со слайдом

7

Слайд 7

Анализ световых кривых фотосинтеза позволяет получить информацию о характере работы фотохимических систем и ферментативного аппарата. Угол наклона кривой характеризует скорость фотохимических реакций и содержание хлорофилла:.

Обычно чем он больше, тем активнее используется световая энергия больше он у теневыносливых растений, обитающих под пологом леса, и у глубоководных водорослей.

У этих растений, приспособленных к условиям слабого освещения, хорошо развитый пигментный аппарат позволяет активнее использовать низкие интенсивности света.

Изображение слайда

Изображение для работы со слайдом

Изображение для работы со слайдом

Реклама. Продолжение ниже

8

Слайд 8

У растений, осуществляющих С3-путь фотосинтеза, насыщение происходит при более низкой интенсивности света, чем у растений с С4-путем превращения углерода, высокая фотосинтезирующая активность которых проявляется только при высоком уровне освещенности.

Изображение слайда

9

Слайд 9

даже кратковременное изменение условий освещенности влияет на интенсивность фотосинтеза. Это свойство позволяет растениям в фитоценозах полнее использовать свет. Фотосинтетический аппарат «настраивается» на периодические сдвиги освещенности при ветре, на частоту мелькания бликов в доли секунды.На ход световых кривых фотосинтеза влияют изменения других факторов внешней среды.

Рис.2. Взаимовлияние интенсивности света и концентрации углекислого газа на скорость фотосинтеза у мхаНапример, при низких температурах (12 С) повышение интенсивности света становится малоэффективным. Температурный оптимум у растений с C3-типом фотосинтеза лежит в пределах 25-35 С. Повышение концентрации С02 с увеличением освещенности приводит к возрастанию скорости фотосинтеза.

Изображение слайда

Изображение для работы со слайдом

10

Слайд 10

Изображение слайда

Изображение для работы со слайдом

11

Слайд 11

Для оценки светового довольствия растения важен качественный (спектральный) состав света. Из лучей, достигающих поверхности земли, 10 % -ультрафиолетовые (с длиной волн от 290 до 400 нм), около 45 % видимый свет (400 – 750 нм) и еще 45 % инфракрасная радиация (750 – 4000 нм).Спектр поглощения хлорофилла имеет максимумы в синих и красных лучах, которые наиболее активны в фотосинтезе.

Изображение слайда

Изображение для работы со слайдом

12

Слайд 12: Почему именно красные лучи наиболее эффективны для фотосинтеза?

Во-первых, потому, что энергия 1 кванта красного света (176 кДж/моль = 42 ккал/моль ) вполне достаточна для перехода молекулы хлорофилла на первый синглетный уровень возбуждения S*. Затем эта энергия целиком может быть использована на фотохимические реакции.

Энергия же 1 кванта синего света выше (293 кДж/моль = 70 ккал/моль). Поглотив квант синего света, молекула хлорофилла переходит на более высокий уровень синглетного возбуждения S*, и эта излишняя энергия превращается в теплоту при переходе молекулы в состояние S*.

Во-вторых, красный свет всегда присутствует в лучах прямой солнечной радиации. Если солнце находится под углом 90°, то красные лучи составляют примерно 1/4 часть полного солнечного света. Если же солнце стоит низко, красные лучи становятся преобладающими.

При стоянии солнца под углом 5 0 красный свет составляет 2/3 от полного. Растения, выращенные на синем и красном свету, существенно различаются по составу продуктов фотосинтеза.

Изображение слайда

13

Слайд 13

Поглощенная энергия в красном участке спектра используется более полно. К. А. Тимирязев сделал вывод, что поглощенная энергия лучей разного качества, разной длины волны используется в фотохимических реакциях с разной эффективностью.

Из теории фотоэффекта следует, что интенсивность любой фотохимической реакции определяется не количеством поглощенной энергии, а числом поглощенных квантов. Могут быть кванты, несущие так мало энергии, что ее не хватает на то, чтобы вызвать химический эффект.

Для фотохимических реакций существует нижний предел энергии, т. е. верхний предел длины волны, после которого они неосуществимы.Таким образом, в квантах красного света (176 кДж/моль hv) заключено достаточное количество энергии для осуществления фотохимической реакции.

Вместе с тем при поглощении квантов синего света (261 кДж/моль hv) реагирующие молекулы будут получать избыток энергии, который выделяется в виде тепла или света.

Изображение слайда

14

Слайд 14

Изображение слайда

Изображение для работы со слайдом

Реклама. Продолжение ниже

15

Слайд 15

Квантовый расход процесса фотосинтеза, т. е. количество квантов, необходимое для того, чтобы одна молекула СО2 восстановилась до углеводов, окончательно не установлен.

Все же большинство исследований показывает, что для восстановления одной молекулы СО2 до углеводов нужно 8-9 квантов света. Редкая фотохимическая реакция имеет квантовый расход, равный единице.

Он может быть значительно больше единицы, так как не все возбужденные молекулы вступают в реакцию; может быть и меньше единицы,

Изображение слайда

16

Последний слайд презентации: Влияние на фотосинтез интенсивности и спектрального состава света: Спасибо за внимание!

Изображение слайда

Изображение для работы со слайдом

Источник: https://slide-share.ru/vliyanie-na-fotosintez-intensivnosti-i-spektralnogo-sostava-sveta-184208

Спектры в агрофотонике

Зависимость интенсивности фотосинтеза от освещенности

Производительность всей системы выращивания определяет количественный критерий оценки – например, полезная масса сухого вещества или объем целевого экстракта из листьев/корней. Для качественной оценки можно анализировать  химический состав растений и морфология (отклонение формы и размеров стебля/листьев/плода).

Для большинства культур лучший урожай и качество продукции могут быть получены при обеспечении растениям комфортных условий, где все основные физиологические потребности максимально приближены к естественным уровням.

Таким образом, в большинстве практических задач за эталон для сравнения и оценки результатов искусственного выращивания можно брать растение, выращенное в естественных условиях. Естественные условия для конкретной культуры, как правило, соответствуют климату в регионе его изначального происхождения.

Основы

Рассматривая процесс выращивания растений как замкнутую систему, можно  выделить следующие основные факторы, влияющие на  результат (см. рис. 1):

– солнечный свет, основной источник энергии
– содержание диоксид углерода (СО2) в воздухе (углерод – основной элемент, используемый для формирования новых клеток) 
– вода, в основном, как источник кислорода, входящего в ее состав, необходимого для реакции фотосинтеза
– температура окружающего воздуха.

Рис. 1

Оптимальная температура фотосинтеза для большинства растений средней полосы составляет примерно 20—25°С. Например, для подсолнечника повышение температуры в интервале от 9 до 19°С увеличивает интенсивность фотосинтеза в 2,5 раза. [1]

Так, при фотосинтезе за счет энергии света происходит образование органических веществ (углеводов) при участии хлорофилла.  Хлорофилл (от греч. χλωρός, «зелёный» и φύλλον, «лист») — зелёный пигмент, окрашивающий хлоропласты растений в зелёный цвет [1].

Таким образом, количество света является важным фактором, влияющим на интенсивность роста растений. [2]

Также на протяжении многих лет эволюции этот процесс адаптировался к суточному циклу “день/ночь”. Днем под воздействием света вода разделяется на кислород и водород, а растение запасает энергию и питательные вещества. Ночью, в темноте углекислый газ под воздействием запасенной энергии соединяется с водородом, образуя молекулы углеводов, т.е. происходит собственно рост культуры. 

Таким образом, при искусственном выращивании растений важно обеспечить не только высокую освещенность, но и правильную цикличность включения света, чтобы получить лучший результат.

О спектрах 

Современные светодиодные технологии позволяют форматировать сложные спектры освещения растений. Рассмотрим, каким образом спектр влияет на процесс роста. 

На рис. 2 детально показаны энергетические спектры поглощения базовых пигментов растения.

Рис. 2

Видно, что помимо традиционно упоминаемых пигментов хлорофилла с пиками поглощения в диапазоне 400-500 нм и 650-700 нм, на процессы роста также влияют вспомогательные пигменты из семейства светособирающих фикобилипротеинов.

В некоторых исследованиях спектры поглощения основных пигментов суммируются для формирования “универсального” спектра, форма которого показана на рис. 3.

Рис. 3

Для количественной оценки светового воздействия на растения используется фотосинтетически активная радиация (ФАР). В англоязычной литературе – Photosynthetic Photon Flux (PPF). Поток ФАР/PPF измеряется как число фотонов, излучаемых источником света, которые могут быть поглощены растением при фотосинтезе (диапазон длин волн от 400 до 700 нм).

Величина PPF рассчитывается без учета неравномерного поглощения растением различных энергии различных длин волн. Поэтому в дополнение к PPF иногда используется величина YPF – Yield Photon Flux  – т.н. усваиваемый растением поток фотонов. Для расчета YPF используется взвешенное значение ФАР и спектр эффективности фотосинтеза как весовые коэффициенты. 

Спектр эффективности фотосинтеза показан на рис. 4.

Рис. 4

Кривая весового коэффициента для фотонов (Photon-weighted) позволяет перевести PPFD в YPF; кривая весового коэффициента энергии (energy-weighted) позволяет сделать то же самое для ФАР, выраженной в ваттах или джоулях.

Рассмотрим подробнее, как влияет на растения излучение в различных участках этого диапазона.

Ультрафиолет C (280 –  315 нм)

Облучение растений таким излучением имеет негативные последствия, может приводить к гибели клеток и обесцвечиванию листьев/плодов.

Ультрафиолет B (315-  380 нм)

Это излучение не имеет видимого эффекта на растения.

Ультрафиолет A (380 –  430 нм)

Передозировка ультрафиолетового излучения может быть опасна для листвы, однако малые дозы излучения поглощаются в процессе цветения и созревания плодов и влияют на цвет и биохимический состав (вкус). Как правило, дозы, получаемые растением под воздействием естественного света, достаточны для поддержания этих процессов. 

Синий свет (430-450 нм)

Как показано выше, эта часть спектра хорошо поглощается большинством основных пигментов растения. Эта часть спектра может влиять на морфологию растения: размер и форму куста/листьев, длину стебля.

Ряд исследований показывает лучшую эффективность синего цвета на раннем этапе развития растения (вегетативная фаза).

 
Синий свет способствует открытию устьиц, увеличению количества белка, синтезу хлорофилла, делению и функционированию хлоропластов, сдерживанию роста стебля.

Зеленый свет (500-550 нм)

Значительная часть этого диапазона отражается от листьев, однако нельзя недооценивать роль и этого участка спектра на полноценное развитие растений. Так, например зеленое излучение, отражаясь от верхних листьев растения, обладает лучшей проникающей способностью и способствует более равномерному развитию листьев, на нижних уровнях, находящихся в тени более крупных соседей (рис. 5) [5]. 

Рис. 5

Также, управление уровнем зеленого в спектре облучения позволяет контролировать время наступления и длительность фаз прорастания и цветения.

Оранжевый свет (550-610 нм)

С точки зрения рассмотренных выше спектров поглощения хлорофиллов, этот диапазон имеет незначительный уровень отклик. Однако, успешный опыт применения натриевых ламп, излучение которых в основном лежит в этом диапазоне, подтверждает, что фактически растения способны развиваться даже при не оптимальном спектральном составе освещения.

Красный (610-720 нм)

Наиболее эффективный диапазон, с точки зрения количества фотонов, поглощаемых растением в процессе на всех этапах развития. 
Красный свет способствует цветению, прорастанию почек, росту стеблевых листьев, опадению листьев, спячке почек, этиоляции и т.д.

Дальний красный (720-1000 нм)

Несмотря на незначительный отклик в спектрах поглощения основных пигментов, дальний красный диапазон выполняет своего рода “сигнальную” функцию – как и в случае с зеленым цветом, корректировка уровня дальнего красного позволяет повлиять на время наступления и длительность фазы цветения и плодоношения.

Инфракрасный  (1000 нм и выше)

Все излучение в этом диапазоне конвертируется в тепло, дополнительно влияющее на температуру растения. 

Следует помнить, что для естественного солнечного света более 50% энергии излучается именно в  инфракрасном диапазоне. Если растение в искусственных условиях облучается только в диапазоне 400-700 нм, то нужно дополнительно предусмотреть запас мощности в системе отопления для поддержания комфортной температуры.

Потребности растения на разных этапах роста

Как было отмечено выше, свет является не только источником энергии, контролирующим фотосинтез. Различные участки спектра воспринимается растением как сигналы, влияющие на многие аспекты роста и развития (прорастания, деэтиоляция) Изменения в развитии растений, связанные со светом являются результатом фотоморфогенеза.

На схеме на рис.6 показаны основные эффекты, стимулируемые различными цветами на протяжении жизненного цикла растения.

Рис. 6

Рассмотрим более подробно влияние света на различных этапах 

Синтез хлорофилла

Самое большое количество хлорофилла вырабатывается при синем свете, меньшее – при белом и красном, самое меньшее – при зеленом свете и в тени. При разном свете, соотношение хлорофилла A и B также не одинаковое. Самая большая разница в соотношении А и B при желтом и синем свете. Красный свет способствует большой выработке хлорофилла типа A.

Для светолюбивых растений подходит синий свет, для тенелюбивых растений подходит красный свет.

Цветение

Соотношение между длительностью светового периода и периода темноты называется фотопериодом.

Общая протяженность суток – 24 часа, однако в зависимости от разной широты и времени года, протяженность дня и ночи неодинаковая.

В зависимости от разных климатических условий и места произрастания, фотопериод у разных растений неодинаков. Цветение, опадение листьев, спячка почек – всё это является реакцией растения на изменение фотопериода.

Растения, которые готовы начать цвести, зацветут при наступлении подходящего фотопериода. Количество дней до начала цветения определяется возрастом растения. Чем старше растение, тем оно быстрее зацветет.

Под воздействием фотопериода оказываются листья растений. Чувствительность листьев к изменению фотопериода связана с возрастом растения. Чувствительность старых листьев и молодых листьев неодинаковая.

Наиболее чувствительными к изменению фотопериода являются растущие листья.

Накопление питательных веществ и рост растений регулируются  излучением в красном и дальним красном диапазоне.  Размножение определяется, синим светом. Фитохром, содержащийся в листьях, может принимать сигналы красного света и дальнего света. Растение готовое к цветению, зацветет, если последнее излучение будет красным дальним светом.

На рис. 7 показаны спектры поглощения растений при синтезе хлорофилла, фотосинтезе и фотоморфогенезе.

Рис. 7

Светодиоды

Современные мощные светодиоды, применяемые в искусственном освещении растений, позволяют сформировать монохромное излучение фактически в любой части спектра, рассмотренной выше.
Примеры спектров светодиодов показаны на рис. 8

Рис. 8

Стоит отметить светодиоды с длиной волны 450 нм (“глубокий синий”) и 660 нм (“дальний красный”), как составляющие, совпадающие с пиками поглощения хлорофиллов.

Как было отмечено выше, наличие светодиодов пиком излучения в других частях спектра, позволяет дополнительно стимулировать другие участки спектра поглощения. Белые люминофорные светодиоды (серая кривая на рис.

8) имеют в составе своего спектра относительно широкую область излучения люминофора, а также синий пик непоглощенного люминофором излучения синего кристалла.

Комбинация светодиодов различных цветов в одном светильнике с возможностью независимого управления позволяет сформировать фактически любой спектр для конкретной культуры и фазы ее развития. 
Примеры спектров, используемых в различных сценариях освещения растений,показаны на рис. 9

Рис. 9

Отдельно стоит рассмотреть спектр облучения, получаемый растением, когда на него воздействует одновременно естественное излучение и излучение системы светодиодной досветки.
Предположим. что в светильнике для досветки используются синие и красные светодиоды в соотношении примерно 1:2 (по уровню энергии), для стимуляции хлорофиллов на стадии вегетативного роста. 

Пример такого спектра показан на рис. 10

Рис. 10

В реальности же на листья растений будет также воздействовать спектр солнечной радиации, и суммарный спектр облучения будет выглядеть следующим образом (рис. 11).

Рис. 11

Видно, что в этом случае растение монохромная досветка в сочетании с широкополосным естественны излучением дает спектр, стимулирующий все основные зоны поглощения растений. Результирующий спектр по форме близок к суммарному спектру поглощения всех основных пигментов растения, рассмотренному выше.

Заключение

Подводя итоги данного обзора можно отметить следующее:

Спектральный состав света является важным фактором для продуктивного выращивания культур в искусственных условия, однако, не первичным.

Получить прирост урожая за счет оптимизации спектра можно при обеспечении растению достаточного уровня базовых потребностей (температура, вода, CO2, вентиляция).

Количество света также является более приоритетным параметром по сравнению с его спектральным составом.

Современные светодиоды позволяют эффективно сформировать излучение в спектральном диапазоне поглощения растений. Причем возможно применение т.н. монохромных светодиодов с различными цветами (длиной волны излучения) и традиционных белых “люминофорных” светодиодов, обеспечивающих равномерное широкополосное излучение.

Наличие в светильнике светодиодов с различными цветами и технологии независимого управления ими позволяет исследовать влияние спектра на эффективность выращивание отдельно взятой культуры в конкретных условиях и выработать оптимальный баланс цветов для лучшей урожайности.

Список литературы

Физиология растений. Н.И. Якушкина. Издательство: “Владос”. Год: 2004

Исследования над образованием хлорофилла у растений. Монтеверде Н. А., Любименко В. Н. Известия Императорской Академии наук. VII серия. — СПБ., 1913. — Т. VII, № 17. — С. 1007–1028.

Создание эффективных светодиодных фитосветильников. Cакен Юсупов, Михаил Червинский, Екатерина Ильина, Владимир Смолянский. Полупроводниковая светотехника N6’2013

Contributions of green light to plant growth and development. Wang, Y. & Folta, K. M.  Am. J. Bot. 100, 70-78 (2013).

Источник: https://aurora-leds.ru/material/spektry-v-agrofotonike/

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: