Закон массы тела

Законы сохранения в механике – FIZI4KA

Закон массы тела

ЕГЭ 2018 по физике ›

Импульс тела – это векторная физическая величина, равная произведению массы тела на его скорость:

Обозначение – ​\( p \)​, единицы измерения – (кг·м)/с.

Импульс тела – это количественная мера движения тела.Направление импульса тела всегда совпадает с направлением скорости его движения.

Изменение импульса тела равно разности конечного и начального значений импульса тела:

где ​\( p_0 \)​ – начальный импульс тела,
​\( p \)​ – конечный импульс тела.

Если на тело действует нескомпенсированная сила, то его импульс изменяется. При этом изменение импульса тела равно импульсу подействовавшей на него силы.

Импульс силы – это количественная мера изменения импульса тела, на которое подействовала эта сила.

Обозначение – ​\( F\!\Delta t \)​, единицы измерения — Н·с.
Импульс силы равен изменению импульса тела:

Направление импульса силы совпадает по направлению с изменением импульса тела.

Второй закон Ньютона (силовая форма):

Важно!
Следует всегда помнить, что совпадают направления векторов:

• силы и ускорения: ​\( \vec{F}\uparrow\uparrow\vec{a} \)​;
• импульса тела и скорости: \( \vec{p}\uparrow\uparrow\vec{v} \)​;
• изменения импульса тела и силы: \( \Delta\vec{p}\uparrow\uparrow\vec{F} \);
• изменения импульса тела и ускорения: \( \Delta\vec{p}\uparrow\uparrow\vec{a} \).

Импульс системы тел

Импульс системы тел равен векторной сумме импульсов тел, составляющих эту систему:

При рассмотрении любой механической задачи мы интересуемся движением определенного числа тел. Совокупность тел, движение которых мы изучаем, называется механической системой или просто системой.

Рассмотрим систему, состоящую из трех тел. На тела системы действуют внешние силы, а между телами действуют внутренние силы.

​\( F_1,F_2,F_3 \)​ – внешние силы, действующие на тела;
​\( F_{12}, F_{23}, F_{31}, F_{13}, F_{21}, F_{32} \)​ – внутренние силы, действующие между телами.
Вследствие действия сил на тела системы их импульсы изменяются.

Если за малый промежуток времени сила заметно не меняется, то для каждого тела системы можно записать изменение импульса в виде уравнения:

В левой части каждого уравнения стоит изменение импульса тела за малое время ​\( \Delta t \)​.
Обозначим: ​\( v_0 \)​ – начальные скорости тел, а ​\( v{\prime} \)​ – конечные скорости тел.
Сложим левые и правые части уравнений.

Но силы взаимодействия любой пары тел в сумме дают нуль.

Важно!
Импульс системы тел могут изменить только внешние силы, причем изменение импульса системы пропорционально сумме внешних сил и совпадает с ней по направлению. Внутренние силы, изменяя импульсы отдельных тел системы, не изменяют суммарный импульс системы.

Закон сохранения импульса

Закон сохранения импульса
Векторная сумма импульсов тел, составляющих замкнутую систему, остается постоянной при любых взаимодействиях тел этой системы между собой:

Замкнутая система – это система, на которую не действуют внешние силы.
Абсолютно упругий удар – столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций.
При абсолютно упругом ударе взаимодействующие тела до и после взаимодействия движутся отдельно.

Закон сохранения импульса для абсолютно упругого удара:

Абсолютно неупругий удар – столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.

Закон сохранения импульса для абсолютно неупругого удара:

Реактивное движение – это движение, которое происходит за счет отделения от тела с некоторой скоростью какой-то его части.

Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.

Для осуществления реактивного движения не требуется взаимодействия тела с окружающей средой, поэтому реактивное движение позволяет телу двигаться в безвоздушном пространстве.

Реактивные двигателиШирокое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Используются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолеты оснащены воздушно-ракетными двигателями.

Реактивные двигатели делятся на два класса:

  • ракетные;
  • воздушно-реактивные.

В ракетных двигателях топливо и необходимый для его горения окислитель находятся непосредственно внутри двигателя или в его топливных баках.

Ракетный двигатель на твердом топливе
При горении топлива образуются газы, имеющие очень высокую температуру и оказывающие давление на стенки камеры.

Сила давления на переднюю стенку камеры больше, чем на заднюю, где находится сопло. Выходящие через сопло газы не встречают на своем пути стенку, на которую могли бы оказать давление.

В результате появляется сила, толкающая ракету вперед.

Сопло – суженная часть камеры, служит для увеличения скорости истечения продуктов сгорания, что, в свою очередь, повышает реактивную силу. Сужение струи газа вызывает увеличение его скорости, так как при этом через меньшее поперечное сечение в единицу времени должна пройти такая же масса газа, что и при большем поперечном сечении.

Ракетный двигатель на жидком топливе

В ракетных двигателях на жидком топливе в качестве горючего используют керосин, бензин, спирт, жидкий водород и др., а в качестве окислителя – азотную кислоту, жидкий кислород, перекись водорода и пр.

Горючее и окислитель хранятся отдельно в специальных баках и с помощью насосов подаются в камеру сгорания, где температура достигает 3000 0С и давление до 50 атм.

В остальном работает так же, как и двигатель на твердом топливе.

Воздушно-реактивный двигатель

В носовой части находится компрессор, засасывающий и сжижающий воздух, который затем поступает в камеру сгорания. Жидкое горючее (керосин) попадает в камеру сгорания с помощью специальных форсунок.

Раскаленные газы выходят через сопло, вращают газовую турбину, приводящую в движение компрессор.

Основное отличие воздушно-реактивных двигателей от ракетных двигателей состоит в том, что окислителем для горения топлива служит кислород воздуха, поступающего внутрь двигателя из атмосферы.

Алгоритм применения закона сохранения импульса к решению задач:

  1. Запишите краткое условие задачи.
  2. Определите характер движения и взаимодействия тел.
  3. Сделайте рисунок, на котором укажите направление векторов скоростей тел до и после взаимодействия.
  4. Выберите инерциальную систему отсчета с удобным для нахождения проекций векторов направлением координатных осей.
  5. Запишите закон сохранения импульса в векторной форме.
  6. Спроецируйте его на выбранные координатные оси (сколько осей, столько и уравнений в системе).
  7. Решите полученную систему уравнений относительно неизвестных величин.
  8. Выполните действия единицами измерения величин.
  9. Запишите ответ.

Работа силы

Механическая работа – это скалярная векторная величина, равная произведению модулей вектора силы, действующей на тело, вектора перемещения и косинуса угла между этими векторами.

Обозначение – ​\( A \)​, единицы измерения – Дж (Джоуль).

1 Дж – это работа, которую совершает сила в 1 Н на пути в 1 м:

Механическая работа совершается, если под действием некоторой силы, направленной не перпендикулярно, тело перемещается на некоторое расстояние.

Зависимость механической работы от угла ​\( \alpha \)​

  • ​\( \alpha=0{\circ},\, \cos\alpha=1,\, A=FS,\,A>0; \)​
  • ​\( 0{\circ}

Источник: https://fizi4ka.ru/egje-2018-po-fizike/zakony-sohranenija-v-mehanike.html

Адиттивность масс системы. Закон сохранения массы

Закон массы тела

Пусть два тела с массами $m_{1} $ и $m_{2} $сталкиваются между собой и соединяются в одно — составное — тело. Примером может служить слипание двух глиняных шаров при столкновении между собой.

Другим примером является химическая или ядерная реакция, в которой два атома или ядра соединяются в молекулу или новое ядро.

Требуется определить массу составного тела $m$, зная массы $m_{1} $ и $m_{2} $ соединяющихся тел.

Рассмотрим процесс столкновения в какой-либо инерциальной системе отсчета $S$. Обозначим через $v_{1} $ и $v_{2} $ скорости тел до столкновения, а через $v$ – скорость составного тела после столкновения. На основании закона сохранения импульса можно записать:

$m_{1} v_{1} +m_{2} v_{2} =mv$. (1)

Рассмотрим теперь этот же процесс в системе отсчета $S'$, движущейся относительно системы $S$ прямолинейно и равномерно со скоростью $V$.

Согласно принципу относительности закон сохранения импульса справедлив также в системе $S'$ и записывается в виде:

  • Курсовая работа 440 руб.
  • Реферат 280 руб.
  • Контрольная работа 230 руб.

$m_{1} v'_{1} +m_{2} v'_{2} =mv'$. (2)

Ввиду полного равноправия инерциальных систем отсчета массы всех тел в системе $S'$такие же, какими они были в системе $S$. В нерелятивистской физике скорости $v'_{1} ,v'_{2} ,v'$ в системе $S'$связаны с соответствующими скоростями в системе $S$следующими соотношениями:

Поэтому (2) преобразуется в:

или на основании соотношения (1):

Отсюда:

$m=m_{1} +m_{2} $. (3)

Масса составного тела равна сумме масс составляющих тел. Это свойство называется аддитивностью массы.

Закон сохранения массы

Доказательство свойства аддитивности массы может быть обобщено. Нет необходимости предполагать, что сталкиваются только два тела и что после столкновения они соединяются в одно тело.

Можно взять, например, произвольную химическую реакцию, в которой реагирует несколько молекул или атомов. Тогда, повторяя рассуждения, мы придем к общему заключению, что сумма масс веществ до реакции равна сумме масс веществ после реакции.

Это – закон сохранения массы.

Современный взгляд

В XX веке обнаружились два новых свойства массы:

  • масса физического объекта зависит от его внутренней энергии;
  • при поглощении внешней энергии масса растет, при потере – уменьшается.

Закон сохранения массы получен как следствие галилеева принципа относительности. Но галилеев принцип относительности является приближенным предельным случаем эйнштейновского принципа относительности.

Законы сохранения массы и энергии, которые в дорелятивистской физике считались двумя независимыми точными законами природы, в релятивистской физике утратили свою независимость и были объединены в единый закон сохранения массы-энергии.

Всякая энергия обладает массой, равной количеству энергии, деленному на квадрат скорости света в вакууме. То обстоятельство, что в химических реакциях не было обнаружено изменение массы вещества, связано с их относительно очень малым энергетическим выходом. Отсюда следует, что масса сохраняется только в изолированной системе, то есть при отсутствии обмена энергией с внешней средой.

Особенно ощутимо изменение массы при ядерных реакциях. Масса не является аддитивной величиной: масса системы не равна сумме масс ее составляющих. Примеры неаддитивности:

  • электрон и позитрон, каждый из которых обладает массой, могут аннигилировать в фотоны, не имеющие массы поодиночке, а обладающие ею как система;
  • масса дейтрона, состоящего из одного протона и нейтрона, не равна сумме масс своих составляющих, поскольку следует учесть энергию взаимодействия частиц;
  • при термоядерных реакциях, происходящих внутри Солнца, масса водорода не равна массе получившегося из него гелия;
  • масса протона ($\approx $938 МэВ) в несколько десятков раз больше массы составляющих его кварков (около 11 МэВ).

Примеры решения задач

Пример 1

Определите массу йодида натрия $NaI$ количеством вещества 1,7 моль.

Дано: $u (NaI)$= 1,7 моль.

Найти: $m(NaI)$-?

Решение:

Молярная масса йодида натрия составляет:

$M(NaI)$ = $M(Na)$+$M(I)$= 23 + 127 = 150 г/моль

Определяем массу $NaI$:

\[m(NaI)=u (NaI)\cdot M(NaI)=1.7\cdot 150=2553\]

Ответ: $m(NaI)=2553$

Пример 2

Найти приращение кинетической энергии замкнутой системы двух тел с массами $m_{1} $ и $m_{2} $ при их абсолютно неупругом столкновении, если до столкновения тела двигались со скоростями $v_{1} $ и $v_{2} $.

Дано: $m_{1} $,$m_{2} $,$v_{1} $,$v_{2} $.

Найти: $\Delta E_{k} $-?

Решение: Кинетическая энергия тел до столкновения равна:

\[E_{k} =\frac{m_{1} v_{1}{2} }{2} +\frac{m_{2} v_{2}{2} }{2} .\]

Кинетическая энергия тел после столкновения равна:

\[E_{k} =\frac{m_{c} v_{c}{2} }{2} ,\]

где $m_{c} =m_{1} +m_{2} $(масса системы по закону сохранения массы), а

$v_{c} =\frac{m_{1} v_{1} +m_{2} v_{2} }{m_{1} +m_{2} } $(скорость системы по закону сохранения импульса).

Тогда приращение кинетической энергии замкнутой системы равно:

\[\Delta E_{k} =\frac{-m_{1} m_{2} }{m_{1} +m_{2} } \cdot \frac{(v_{1} -v_{2} ){2} }{2} .\]

Ответ: $\Delta E_{k} =\frac{-m_{1} m_{2} }{m_{1} +m_{2} } \cdot \frac{(v_{1} -v_{2} ){2} }{2} $

$ и $m_{2} $сталкиваются между собой и соединяются в одно — составное — тело. Примером может служить слипание двух глиняных шаров”,”word_count”:674,”direction”:”ltr”,”total_pages”:1,”rendered_pages”:1}

Источник: https://spravochnick.ru/fizika/dinamika/adittivnost_mass_sistemy_zakon_sohraneniya_massy/

Закон взаимосвязи массы и энергии – формулировка

Закон массы тела

Закон взаимосвязи массы и энергии в теории относительности Альберта Эйнштейна выражается в виде простой формулы E=mc2. Данное выражение стало объектом многих размышлений о природе энергии в теории частиц. В настоящее время достоверность этого физического выражения подтверждено целым рядом экспериментов.

Альберт Эйнштейн

В XVII веке открытие Исааком Ньютоном физических законов, которые одновременно действуют для земных и небесных тел, поразило его современников и создало стройную теорию механики с математической точки зрения, которая получила название классической физики.

Тем не менее, в конце XIX века в физике накопилось уже достаточное количество феноменов, которые не могли быть объяснены в рамках ньютоновской механики. Разрешить появившиеся проблемы смог Альберт Эйнштейн, создав свою теорию относительности.

Эта теория положила начало всей современной физике.

Постулаты и выводы теории относительности не подчинялись здравому смыслу. С начала XX века достижения физики становятся все более специализированными и не поддаются пониманию для простого человека.

Однако, уже при жизни ученого многие выводы его теории относительности были подтверждены экспериментально. Благодаря своим изложенным идеям А. Эйнштейн считается одним из самых ярких и знаменитых физиков. По крайне мере, равных ему не знает человечество.

Одной из таких идей является закон взаимосвязи массы и энергии.

Физические понятия энергии и массы

Существуют разнообразные виды энергии, например, тепловая, кинетическая, электрическая и другие. В физике энергия измеряется в джоулях. Эта физическая величина не может появиться из ничего, также как не может просто исчезнуть, она может лишь переходить в различные формы.

Масса в физике связана с количеством составляющего данное тело вещества. Масса, также как и энергия, не может бесследно исчезнуть, а может изменить свою форму, например, перейти из твердого состояния в жидкое. Измеряется масса в килограммах.

Публикации

Знаменитыми публикациями Альберта Эйнштейна по проблеме взаимосвязи массы и энергии являются статьи со следующими названиями:

  1. “Зависит ли инерция тела от количества содержащейся в нем энергии”.
  2. “Об электродинамике тел в движении”.

Эти статьи были опубликованы в немецком журнале “Annalen der Physik”. В них ученый излагает основы своей специальной теории относительности. Основным тезисом ко второй статье является следующая гипотеза:

Если тело выделяет энергию L в форме радиоактивного излучения, то его масса уменьшается на величину L/c2.

В этом случае излучение эквивалентно понятию кинетической энергии в физике, а под массой понимается физическая величина с таким же названием в покое.

Отметим, что в данной статье опубликованное выражение отражает лишь изменение массы, а не всю массу объекта.

Когда ученый опубликовал формулу взаимосвязи массы и энергии Δm = L/c2, где с – скорость света в вакууме, то это была лишь гипотеза, которая еще не получила своего экспериментального обоснования.

Каждый школьник знает, кто открыл закон взаимосвязи массы и энергии. Масса и энергия являются проявлением одного и того же. Поэтому, по словам самого А.

Эйнштейна, при определенных условиях эти физические величины могут преобразовываться обратимо друг в друга.

В ситуациях, касающихся обычной жизни человека, такие преобразования не происходят, вернее они являются настолько незначительными, что не ощущаются. В начале XX века закон взаимосвязи массы и энергии Эйнштейна был доказан экспериментально.

Париж, 1933 год. Ирен и Фредерик Жолио-Кюри сфотографировали процесс, при котором энергия переходит в массу: высокоэнергетический фотон породил позитрон и электрон вблизи ядра атома, которые были обнаружены по оставленным трекам в пузырьковой камере. При этом процессе часть импульса была передана атомному ядру.

Также наблюдался процесс, противоположный описанному. Когда позитрон запускали в пузырьковую камеру, то он, сталкиваясь с атомами вещества, терял свою энергию до тех пор, пока практически не остановился. В состоянии покоя позитрон встречается с каким-либо валентным электроном атома вещества, и обе частицы исчезают, порождая пару фотонов, которые разлетаются в противоположных направлениях.

Еще одним экспериментальным проявлением закона взаимосвязи массы и энергии являются ядерные реакции в реакторе. В частности, расщепление ядра на мелкие составляющие с освобождением элементарных частиц и энергии в виде излучения.

Измерения массы всех осколков ядра после его деления показывают, что эта физическая величина оказывается меньшей, чем масса начального ядра. Разница в массах реагента и продуктов преобразуется в электромагнитное излучение.

Пользуясь законом взаимосвязи массы и энергии E = mc2, энергию этого электромагнитного излучения можно вычислить точно.

Масса и энергия – это одно и то же?

Знаменитое выражение великого ученого, связывающее массу и энергию, является прямым следствием специальной теории относительности. При этом согласно формуле E = mc2 получается, что небольшому количеству массы в физике соответствует огромная энергия.

Однако для понимания этого закона следует знать, что не всякая масса может быть преобразована в энергию, также как не каждая энергия трансформируется в вещество с данной массой. Например, плитка шоколада содержит около 1000 кДж энергии, которую может использовать организм человека, а не 3 600 000 000 000 кДж энергии, которую предсказывает формула.

Энергия продуктов питания, которую может использовать человеческий организм, зарезервирована в определенных межмолекулярных химических связях.

Большая же часть энергии хранится в самих молекулах и атомах, и она оказывается недоступной для протекания метаболических процессов.

Этот факт объясняет, почему в процессах, которые приводят к изменению структуры и состава атомных ядер, освобождается большое количество энергии.

Сохранение массы и энергии

Один из главных принципов теории относительности требует сохранения энергии в любой системе пространственных координат.

Согласно этому принципу знаменитый закон взаимосвязи массы и энергии Эйнштейна справедлив только для состояния покоя.

Когда же тело начинает двигаться, то к этому закону уже нужно добавить множитель, который называется фактором Лоренца. В итоге формула приобретает вид, показанный на рисунке.

Благодаря введению фактора Лоренца был сформулирован закон взаимосвязи массы и энергии для релятивистского случая.

Релятивистская масса

Используя уравнения Эйнштейна с учетом фактора Лоренца, можно сказать, что, если тело с конечной массой m начинает двигаться со скоростями v, близкими к скорости света c, тогда его энергия E стремится к бесконечности.

Это умозаключение можно интерпретировать так, что бесконечной становится масса тела, и не существует ни одной силы, которая бы могла придать какую-либо скорость этой массе.

Именно по этой причине скорость света не может быть достигнута ни одним объектом, который обладает конечной массой в покое.

Отметим, что при скоростях, которые сравнимы со скоростью электромагнитной волны, масса покоя тела не изменяется, изменяется лишь релятивистская масса, которая имеет другую интерпретацию, чем масса тела, связанная с ее инерцией. Чтобы не возникало путаницы с понятием массы в физике, многие ученые рекомендуют использовать только понятие инертной постоянной массы m0 при любых скоростях. Изменяется при этом лишь энергия системы E.

Понятие релятивистской массы не является какой-либо реальной физической концепцией. Дело в том, что скорость и сила являются векторными величинами.

Если принять тот факт, что тело, которое движется с околосветовыми скоростями, бесконечно увеличивает свою релятивистскую массу, то любая конечная сила, приложенная в направлении его движения, придаст этому телу бесконечно малое ускорение.

Однако та же сила, которая действует перпендикулярно вектору скорости тела, сможет придать ему некоторое конечное ускорения согласно второму закону Ньютона. При этом использоваться будет именно инертная масса тела m0.

Количество движения или импульс тела

По аналогии введения фактора Лоренца для релятивистского случая для энергии, его также можно ввести и для импульса тела. В итоге получится, что энергию системы можно выразить следующим образом: E2 = (pc)2+(m0c2)2, где p – импульс тела.

Применение это выражение находит для описания энергии частиц, которые не обладают массой покоя. Такими элементарными частицами являются фотоны. Для них второе слагаемое представленного выражения становится равным 0, и энергия фотона приобретает вид: E = pc.

Термоядерный синтез и ядерный распад

Ядерный распад является одним из основных источников энергии в настоящее время. На ядерных электростанциях используют радиоактивный уран, который входит в группу лантаноидов периодической системы Менделеева.

При облучении атома урана нейтронами он становится нестабильным и распадается на два неравных ядра и некоторые другие частицы.

Масса всех продуктов распада в сумме оказывается меньше массы атома урана, эта разница уходит в энергию излучения, которую и используют для перевода в электрическую энергию.

Термоядерный синтез является перспективным способом использования закона взаимосвязи массы и энергии для человеческих нужд. Заключается этот процесс в слиянии двух атомов тяжелого водорода с образованием атома гелия. При этом масса продукта оказывается меньше, чем масса реагентов. Установки по контролируемому термоядерному синтезу в настоящее время активно разрабатываются.

Источник: https://FB.ru/article/388682/zakon-vzaimosvyazi-massyi-i-energii---formulirovka

Законы Ньютона для

Закон массы тела

Мы уже говорили об основах классической механики. Настала пора поговорить о них подробнее и затронуть в обсуждении чуть больше, чем просто основу. В этой статье мы подробно разберем основные законы классической механики. Как вы уже догадались, речь пойдет о законах Ньютона.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Основные законы классической механики Исаак Ньютон (1642-1727) собрал и опубликовал в 1687 году. Три знаменитых закона были включены в труд, который назывался «Математические начала натуральной философии».

Был долго этот мир глубокой тьмой окутан
Да будет свет, и тут явился Ньютон.

(Эпиграмма 18-го века)

Но сатана недолго ждал реванша –
Пришел Эйнштейн, и стало все как раньше.

(Эпиграмма 20-го века)

Что стало, когда пришел Эйнштейн, читайте в отдельном материале про релятивистскую динамику. А мы пока приведем формулировки и примеры решения задач на каждый закон Ньютона.

Первый закон Ньютона

Первый закон Ньютона гласит:

Существуют такие системы отсчета, называемые инерциальными, в которых тела движутся равномерно и прямолинейно, если на них не действуют никакие силы или действие других сил скомпенсировано.

Проще говоря, суть первого закона Ньютона можно сформулировать так: если мы на абсолютно ровной дороге толкнем тележку и представим, что можно пренебречь силами трения колес и сопротивления воздуха, то она будет катиться с одинаковой скоростью бесконечно долго.

Инерция – это способность тела сохранять скорость как по направлению, так и по величине, при отсутствии воздействий на тело. Первый закон Ньютона еще называют законом инерции.

До Ньютона закон инерции был сформулирован в менее четкой форме Галилео Галилеем. Инерцию ученый называл «неистребимо запечатленным движением». Закон инерции Галилея гласит: при отсутствии внешних сил тело либо покоится, либо движется равномерно.

Огромная заслуга Ньютона в том, что он сумел объединить принцип относительности Галилея, собственные труды и работы других ученых в своих “Математических началах натуральной философии”.

Понятно, что таких систем, где тележку толкнули, а она покатилась без действия внешних сил, на самом деле не бывает.

На тела всегда действуют силы, причем скомпенсировать действие этих сил полностью практически невозможно.

Например, все на Земле находится в постоянном поле силы тяжести. Когда мы передвигаемся (не важно, ходим пешком, ездим на машине или велосипеде), нам нужно преодолевать множество сил: силу трения качения и силу трения скольжения, силу тяжести, силу Кориолиса.

 

Второй закон Ньютона

Помните пример про тележку? В этот момент мы приложили к ней силу! Интуитивно понятно, что тележка покатится и вскоре остановится. Это значит, ее скорость изменится.

В реальном мире скорость тела чаще всего изменяется, а не остается постоянной. Другими словами, тело движется с ускорением. Если скорость нарастает или убывает равномерно, то говорят, что движение равноускоренное.

Если рояль падает с крыши дома вниз, то он движется равноускоренно под действием постоянного ускорения свободного падения g. Причем любой дугой предмет, выброшенный из окна на нашей планете, будет двигаться с тем же ускорением свободного падения.

Второй закон Ньютона устанавливает связь между массой, ускорением и силой, действующей на тело. Приведем формулировку второго закона Ньютона:

Ускорение тела (материальной точки) в инерциальной системе отсчета прямо пропорционально приложенной к нему силе и обратно пропорционально массе.

 

Если на тело действует сразу несколько сил, то в данную формулу подставляется равнодействующая всех сил, то есть их векторная сумма.

В такой формулировке второй закон Ньютона применим только для движения со скоростью, много меньшей, чем скорость света.

Существует более универсальная формулировка данного закона,  так называемый дифференциальный вид.

В любой бесконечно малый промежуток времени dt сила, действующая на тело, равна производной импульса тела по времени.

Третий закон Ньютона

В чем состоит третий закон Ньютона? Этот закон описывает взаимодействие тел.

3 закон Ньютона говорит нам о том, что на любое действие найдется противодействие. Причем, в прямом смысле:

Два тела воздействуют друг на друга с силами, противоположными по направлению, но равными по модулю.

Формула, выражающая третий закон Ньютона:

Другими словами, третий закон Ньютона – это закон действия и противодействия.

 

Пример задачи на законы Ньютона

Вот типичная задачка на применение законов Ньютона. В ее решении используются первый и второй законы Ньютона.

Десантник раскрыл парашют и опускается вниз с постоянной скоростью. Какова сила сопротивления воздуха? Масса десантника – 100 килограмм.

Решение:  

Движение парашютиста – равномерное и прямолинейное, поэтому, по первому закону Ньютона, действие сил на него скомпенсировано.

На десантника действуют сила тяжести и сила сопротивления воздуха. Силы направлены в противоположные стороны.

По второму закону Ньютона, сила тяжести равна ускорению свободного падения, умноженному на массу десантника.

Ответ: Сила сопротивления воздуха равна силе тяжести по модулю и противоположна направлена.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

А вот еще одна физическая задачка на понимание действия третьего закона Ньютона.

Комар ударяется о лобовое стекло автомобиля. Сравните силы, действующие на автомобиль и комара.

Решение:

По третьему закону Ньютона, силы, с которыми тела действуют друг на друга, равны по модулю и противоположны по направлению. Сила, с которой комар действует на автомобиль, равна силе, с которой автомобиль действует на комара.

Другое дело, что действие этих сил на тела сильно отличаются вследствие различия масс и ускорений.

Исаак Ньютон: мифы и факты из жизни

На момент публикации своего основного труда Ньютону было 45 лет. За свою долгую жизнь ученый внес огромный вклад в науку, заложив фундамент современной физики и определив ее развитие на годы вперед.

Он занимался не только механикой, но и оптикой, химией и другими науками, неплохо рисовал и писал стихи. Неудивительно, что личность Ньютона окружена множеством легенд.

Ниже приведены некоторые факты и мифы из жизни И. Ньютона. Сразу уточним, что миф – это не достоверная информация. Однако мы допускаем, что мифы и легенды не появляются сами по себе и что-то из перечисленного вполне может оказаться правдой.

  • Факт. Исаак Ньютон был очень скромным и застенчивым человеком. Он увековечил себя благодаря своим открытиям, однако сам никогда не стремился к славе и даже пытался ее избежать.
  • Миф. Существует легенда, согласно которой Ньютона осенило, когда на наго в саду упало яблоко. Это было время чумной эпидемии (1665-1667), и ученый был вынужден покинуть Кембридж, где постоянно трудился. Точно неизвестно, действительно ли падение яблока было таким роковым для науки событием, так как первые упоминания об этом появляются только в биографиях ученого уже после его смерти, а данные разных биографов расходятся.
  • Факт. Ньютон учился, а потом много работал в Кембридже. По долгу службы ему нужно было несколько часов в неделю вести занятия у студентов. Несмотря на признанные заслуги ученого, занятия Ньютона посещались плохо. Бывало, что на его лекции вообще никто не приходил. Скорее всего, это связано с тем, что ученый был полностью поглощен своими собственными исследованиями.
  • Миф. В 1689 году Ньютон был избран членом Кембриджского парламента. Согласно легенде, более чем за год заседания в парламенте вечно поглощенный своими мыслями ученый взял слово для выступления всего один раз. Он попросил закрыть окно, так как был сквозняк.
  • Факт. Неизвестно, как бы сложилась судьба ученого и всей современной науки, если бы он послушался матери и начал заниматься хозяйством на семейной ферме. Только благодаря уговорам учителей и своего дяди юный Исаак отправился учиться дальше вместо того, чтобы сажать свеклу, разбрасывать по полям навоз и по вечерам выпивать в местных пабах.

Дорогие друзья, помните – любую задачу можно решить! Если у вас возникли проблемы с решением задачи по физике, посмотрите на основные физические формулы. Возможно, ответ перед глазами, и его нужно просто рассмотреть. Ну а если времени на самостоятельные занятия совершенно нет, специализированный студенческий сервис всегда к вашим услугам!

В самом конце предлагаем посмотреть видеоурок на тему “Законы Ньютона”.

Источник: https://Zaochnik.ru/blog/zakony-nyutona-dlya-chajnikov-obyasnenie-primer/

Сила и масса. законы ньютона

Закон массы тела

Законы Ньютона — три закона, лежащие в основе классической механики и позволяющие записать уравнения движения для любоймеханической системы.

Первый закон Ньютона постулирует существование инерциальных систем отсчета.

Инерция — это свойство тела сохранять свою скорость движения неизменной (и по величине, и по направлению), когда на тело не действуют никакие силы. Чтобы изменить скорость движения тела, на него необходимо подействовать с некоторой силой.

Естественно, результат действия одинаковых по величине сил на различные тела будет различным. Таким образом, говорят, что тела обладают разной инертностью. Инертность — это свойство тел сопротивляться изменению их скорости.

Величина инертности характеризуется массой тела.

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальные точки, когда на них не действуют никакие силы (или действуют силы взаимно уравновешенные), находятся в состоянии покоя или равномерного прямолинейного движения.

Основная статья: Второй закон Ньютона

Второй закон Ньютона — дифференциальный закон движения, описывающий взаимосвязь между приложенной к материальной точке силой и получающимся от этого ускорением этой точки. Фактически, второй закон Ньютона вводит массу как меру проявления инертности материальной точки в выбранной инерциальной системе отсчёта (ИСО).

Масса материальной точки при этом полагается величиной постоянной во времени и независящей от каких-либо особенностей её движения и взаимодействия с другими телами.

В инерциальной системе отсчёта ускорение, которое получает материальная точка с постоянной массой, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

При подходящем выборе единиц измерения, этот закон можно записать в виде формулы:

где — ускорение материальной точки;

— равнодействующая всех сил, приложенных к материальной точке;

— масса материальной точки.

Второй закон Ньютона может быть также сформулирован в эквивалентной форме с использованием понятия импульс:

В инерциальной системе отсчета скорость изменения импульса материальной точки равна равнодействующей всех приложенных к ней внешних сил.

где — импульс точки, — её скорость, а — время. При такой формулировке, как и при предшествующей, полагают, что масса материальной точки неизменна во времени.

Иногда предпринимаются попытки распространить сферу применения уравнения и на случай тел переменной массы. Однако, вместе с таким расширительным толкованием уравнения приходится существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила.

#физика | Загадочная энергия. Закон сохранения массы и энергии

Закон массы тела

Вселенная, включающая в себя Землю и другие объекты в космическом пространстве, состоит из материи. Материей является все, что занимает определенное пространство и обладает массой, определяющей количество материи. Метрической единицей измерения массы является грамм (г).

На Земле материя принимает три основные формы: твердую, жидкую и газообразную. Вес объекта позволяет определить его массу. Чем больше его вес, тем больше масса. Разумеется, при одинаковых гравитационных условиях. Продолжаем начатое с работы повествование об энергии рассказом о том, почему Вселенная всегда содержит одинаковый объем массы и энергии.

Вы сможете даже проверить это в ходе очень простого научного эксперимента.

Вселенная немыслима без энергии, и каждому следует знать о том, что это такое и какой она бывает. В этом, безусловно, помогает научная и научно-популярная литература, в которой сложные вещи подаются в доступной каждому, вне зависимости от возраста, форме.

Среди этих книг следует особо выделить англоязычный популяризаторский труд Дженис Ванклив (Janice VanCleave) «Energy for Every Kid» («Об энергии — каждому ребенку»). В этой своей книге она обстоятельно рассказала юным и не очень читателям об особенностях различных типов энергии.

Англоязычный веб-сайт «Energy and kids» собрал на своих страницах все самое интересное и важное, что следует каждому знать об энергии. На его страницах рассмотрены принципы энергии, поведана история научной мысли в области энергетики, располагаются биографии ученых, трудившихся в этой области знаний.

Кроме того, сайт рассматривает принципы энергосбережения. На нем составлена подборка экспериментов, выполняемых школьниками под руководством учителя. Немало интересного там сказано также и о способах применения энергии человеческой цивилизацией. Представлена там также и подборка фактов об энергии.

На англоязычном познавательном веб-сайте для детей Penguin, в числе прочих образовательных материалов, располагается «Energy Guide for kids». Эта интереснейшая подборка отвечает на ряд вопросов об энергии, которые могут возникнуть у каждого любознательного человека.

Из чего состоит Вселенная?

«Строительными блоками» материи являются атомы. Базовые химические вещества, состоящие из атомов одного типа, называются элементами. Соединяясь вместе, атомы образуют связи. Вещества, состоящие из нескольких типов атомов, называют сложными. Существует два типа таких соединений — молекулярные и ионные соединения.

Примером ионного соединения является хлорид натрия (поваренная соль). Такие соединения состоят из ионов (атомов или групп атомов, обладающих электрическим зарядом). Молекулярные соединения (например вода), состоят из молекул. Молекула является мельчайшей физической частицей молекулярного соединения.

В восемнадцатом столетии французский химик Антуан Лавуазье впервые в истории человеческой цивилизации обнаружил, что в ходе химической реакции (процесса, в ходе которого атомы формируют новое вещество), материя не образуется и не исчезает. Просто химические элементы в реагентах формируют новую структуру.

При этом общая масса вещества в ходе химической реакции сохраняется, оставаясь неизменной. Масса итогового вещества равна сумме масс реагентов. Это свойство материи стало называться законом сохранения массы.

Химические реактивы обладают химической энергией, которая удерживает атомы вместе. Химическая энергия является одной из форм потенциальной энергии и называется химической потенциальной энергией.

Эта энергия реализуется, когда связь между атомами разрушается в процессе химической реакции.

В девятнадцатом столетии это явление стали называть законом сохранения энергии, который впервые был описан немецким ученым Юлиусом Робертом фон Майером. Согласно этому физическому закону, при обычных условиях энергия может менять свою форму, но общий ее объем во Вселенной всегда остается неизменным.

Иными словами, как и материя, никогда не возникает новой энергии и она никуда не исчезает. Только трансформируется, переходя из одной формы в другую. К примеру, когда вы поднимаете коробку с пола, энергия, которую вы получили от пищи, передается поднимаемой вами коробке.

Атом состоит из ядра (центральная часть атома), которое содержит протоны (положительно заряженные частицы) и нейтронов (частицы без заряда), а также электронов (отрицательно заряженных частиц).

В 1905 году Альберт Эйнштейн выдвинул теорию, согласно которой при экстраординарных условиях масса может преобразоваться в энергию, а энергия в массу.

Эти специальные условия называются ядерной реакцией, когда изменения происходят в ядре атома.

Чтобы учесть эти исключительные условия, законы сохранения были объединены в закон сохранения массы и энергии. Этот физический закон утверждает, что материя и энергия могут переходит друг в друга. При этом сумма всех масс и всей энергии во Вселенной остается неизменной. Если одного из них становится больше, то другого — меньше.

Впрочем, в повседневной жизни законы сохранения массы и энергии применяются раздельно. Когда речь идет о потере или обретении энергии, понятно, что говорится о переходе энергии из одного состояния в другое. Исключением являются только ядерные реакции, в ходе которых расщепляется ядро атома и происходит трансформация материи в энергию или наоборот.

Эксперимент

А теперь сами убедимся в том, что масса сохраняется. В ходе эксперимента следует соблюдать аккуратность, вся посуда должна быть одноразовой и утилизироваться после проведения эксперимента.

Материалы и оборудование Два 90-миллилитровых картонных стаканчика Мерные ложки Водопроводная вода Одна столовая ложка (5 миллилитров) аптечного сульфата магния Ложка Жидкий школьный клей Кухонные весы

Бумажное полотенце

Ход эксперимента
1. В один из картонных стаканчиков добавьте 2 столовые ложки (10 миллилитров) водопроводной воды и сульфат магния. Перемешивайте до тех пор, пока сульфат магния не растворится или полностью, или по крайней мере его осадок будет небольшим.

2. Во второй стаканчик влейте 1 столовую ложку (5 миллилитров) жидкого школьного клея.

3. Взвесьте оба стаканчика на весах. Запишите массу каждого стаканчика и их общую массу. Обратите внимание на внешний вид содержимого каждого из стаканчиков.

4. Влейте водный раствор сульфата магния в стаканчик с клеем. Перемешайте содержимое стаканчика. Обратите внимание на его внешний вид.

5. Взвесьте пустой стаканчик и стаканчик с раствором. Запишите массу каждого из них по отдельности и общую массу. Сравните общую массу с той, которая была при предыдущем взвешивании.

6. Теперь, сопоставив массы, извлеките лопаткой белый сгусток твердого вещества, который образовался в стаканчике и переместите его на бумажное полотенце. Оберните полотенце вокруг сгустка и сожмите его, чтобы выжать лишнюю жидкость. Чем отличается сгусток от тех веществ, которыми он был образован?

Результат
Вначале один из стаканчиков содержит прозрачную жидкость, образованную сульфатом магния и водой, а второй — белый жидкий клей. После смешивания образуется белый твердый сгусток и некоторый излишек жидкости. Массы стаканчиков остаются прежними до и после смешивания.

Почему так происходит?
Смесь сульфата магния и воды формирует раствор (вещество, растворенное в жидкости). Жидкий клей тоже является раствором, состоящим из различных веществ, растворенных в воде. Когда эти два раствора соединяются, происходит химическая реакция между ее компонентами, которая ведет к образованию белого твердого материала.

Даже когда исходные реагенты распадаются на частицы и переформируются в новом порядке, все они остаются в стаканчике. По этой причине, когда вы повторно взвешиваете стаканчики, не происходит никаких изменений в их общей массе. На этом простом примере продемонстрировано сохранение массы в ходе химической реакции.

Загадок энергии немало, читайте дополнительные материалы о них в соответствующей рубрике, которая будет пополняться по мере рассмотрения все новых и новых вопросов, касающихся энергии.

Как работает АЭС? Опасны ли атомные станции?

Многие люди в самом начале разговора об атомных станциях сразу начинают говорить о том, что это очень опасно и от них надо отказываться. Отчасти они правы, но их страхи сильно преувеличены. Для того, чтобы избавиться от такого стереотипа, надо просто понять, как работает станция и убедиться в том, что попадание радиоактивных элементов в окружающую среду […]

Читать далее Недостающая часть: почему найти квантовую теорию гравитации так сложно?

Использование математики в науке в целом и физике в частности часто описывается как язык, что рождает впечатление некоего секретного кода, который должен отпугнуть всяк сюда входящего, больше неприятность, чем необходимость. Здесь мы занимаемся не только наукой, но и ее популяризацией, а вы знаете, что для успешных продаж научных книг в них должно быть как можно […]

Читать далее 10 важнейших открытий в астрономии

Астрономия, как известно, самая древняя наука. Древние цивилизации по всему миру смотрели на небо и звезды, но только в 17 веке астрономы начали задумываться о том, как оно там, наверху, работает. Эти открытия в конечном итоге привели к прекрасной и захватывающей картине вселенной, которая у нас есть сегодня. Перед вами несколько важнейших вех, которые были […]

Читать далее

Источник: https://Hi-News.ru/eto-interesno/fizika-zagadochnaya-energiya-zakon-soxraneniya-massy-i-energii.html

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: