За счет деления клеток

Деление клеток — Знаешь как

За счет деления клеток

статьи

Рост и развитие многоклеточных организмов связаны с делением клеток. За 24 ч у человека погибает и вновь возникает 5х1011 клеток. Клетки крови, эпителия, костной ткани за год заменяются полностью.

В жизненном цикле размножающихся клеток различают интерфазу — период между делениями — и собственно митоз.

В различных делящихся клетках продолжительность интерфазы от 10—12 ч до 20 сут. В течение этого периода клетка продолжает функционировать и подготавливается к очередному митозу.

При этом происходит редупликация (удвоение) хромосом, удвоение всех макромолекулярных образований цитоплазмы, центриолей клеточного центра, накапливаются структурные белки, идущие на построение веретена деления, создается необходимый запас энергии.

Рис. 10. Клеточный центр: 1 — центриоль, 2- центросфера, 3- астросфера, 4- ядро

Большую роль в делении клетки играет особый органоид — клеточный центр. Он расположен в цитоплазме и представляет собой 1—2 мелких тельца — центриоли (рис. 10). Центриоли, подобно митохондриям, содержат в своем составе ДНК, поэтому перед делением клетки каждая центриоль создает себе подобную.

Митоз

Универсальный способ деления клеток, который обеспечивает рост организма и составляет основу его развития. В результате митоза получаются две дочерние клетки, содержащие количество хромосом, одинаковое с исходной клеткой. При митозе между дочерними клетками равномерно распределяются и основные органоиды цитоплазмы.

Митотическое деление клетки подразделяют на четыре фазы: профазу, метафазу, анафазу и телофазу (рис. 11).

В профазе клетка поляризуется: центриоли расходятся к противоположным полюсам.

Между ними образуется веретено из тонких цитоплазматических нитей (микротрубочек), заостренное у полюсов (у центриолей) и широкое в центре (у экватора).

Центриоли и нити веретена образуют митотический аппарат клетки. Расхождение центриолей начинается в ранней профазе, а полное формирование всего митотического аппарата обычно заканчивается к концу профазы.

Рис. 11. Схема митоза:

а — интерфаза; б — д — профаза, во время которой наблюдается постепенное сокращение и конденсация хромосом (каждая из них составлена из двух хроматид); е — ж — прометафаза, начинается образование веретена и исчезновение ядерной оболочки; э —и — метафаза; к — анафаза; л — к — телофаза. Центромера изображена в виде светлого кружка в каждой хромосоме

Ядро клетки в течение профазы набухает; хроматиновые нити благодаря спирализации хромосом становятся более толстыми, хотя в большинстве случаев границы отдельных хромосом еще не выявляются. Позднее в результате дальнейшей спирализации хромосомы утолщаются и становятся различимы в виде отдельных нитей. В профазе уже видно, что хромосомы удвоены.

Профаза продолжается от 20 до 60 мин и заканчивается растворением оболочки ядра и ядрышка. Хромосомы после растворения ядерной оболочки оказываются в цитоплазме. Метафаза продолжается от 2 до 15 мин.

Хромосомы укорачиваются и утолщаются, что позволяет легко подсчитать их количество, определить форму и размеры.

Фиксированные препараты метафазы митоза дают возможность детально изучить морфологию хромосомного набора—кариотипа клетки.

Рис. 12. Схема строения хромосомы:

1- спутник; 2 — короткое плечо хромосомы; — центромера; 4 — волокна веретена; 5 — длинное плечо; — вторичная перетяжка.

Кариотип характеризуется определенным числом и морфологией хромосом (рис. 12). Число хромосом — один из наиболее постоянных видовых признаков.

В клетках гороха содержится 14 хромосом, у речного рака—116. В клетках человека — 46 хромосом.

Наиболее сходные между собой хромосомы, имеющие одинаковое строение, называют гомологичными. В метафазе можно видеть, что каждая хромосома имеет «двойника» (гомолога), а вся совокупность метафазных хромосом представляет собой двойной, или, как принято говорить, диплоидный, набор. 46 хромосом человека составляют 23 пары (рис. 13).

Из 23 пар хромосом человека 22 пары одинаковы у мужчин и женщин. Это аутосомы (от номера 1 до номера 22).

В 23-й паре хромосом имеется отчетливая половая дифференцировка: в клетках тела женщин находятся две крупные, вполне идентичные друг другу Х-хромосомы; у мужчин имеется только одна Х-хромосома, ее партнером у мужчин является маленькая Y-хромосома. Х- и Y-хромосомы называют половыми хромосомами.

Метафаза — наиболее короткий период митоза. В ней различают метакинез и истинную метафазу.

Метакинез начинается сразу после профазы. Его исходным моментом является разрыв ядерной мембраны, которая разрушается за счет повышения осмотического давления внутри ядра к концу профазы.

Рис. 13. Хромосомы женщины (вверху) и мужчины (внизу)

Разрыв ядерной мембраны приводит в движение хромосомы. По инерции они движутся вслед за фрагментами ядерной мембраны к периферии клетки, но в этот момент попадают под влияние нитей веретена. Нити веретена прикрепляются к центромерам хромосом и фиксируют их на короткое время в области экватора клетки, образуя материнскую звезду, или экваториальную пластинку.

Во время истинной метафазы разрываются связи между хроматидами в плечах хромосом и происходит удвоение центромеры. Такая поздняя редупликация центромеры удерживает хроматиды в пределах одной хромосомы до тех пор, пока не произойдет окончательная спирализация каждой хромосомы.

Нити веретена при рассматривании с помощью электронного микроскопа имеют вид тонких трубочек диаметром 150—200 Å. Это — белковые образования, они, как полагают некоторые авторы, аналогичны сократительным белкам мышц.

Если это так, то в основе перемещения хромосом и мышечного сокращения лежат, очевидно, сходные механизмы.

Редупликация центромеры подготавливает начало анафазы.

Анафаза характеризуется тем, что хромосомы из плоскости экватора движутся к противоположным полюсам в среднем со скоростью около 1 мкм в минуту.

В анафазу из каждой пары хромосом одна отходит к одному полюсу, другая — к другому. Происходит распределение ранее удвоенных хромосом на две равные группы, которые дают начало ядрам дочерних клеток.

В анафазе митоза происходит важнейший процесс — точное распределение генетического материала между дочерними клетками.

Рис. 14. Схема мейоза клеиси, содержащей две пары гомологичных хромосом.

А—профаза I: в этой воображаемой диплоидной клетке имеются две пары гомологичных хромосом (видны как одиночные нити); Б — профаза Iа: гомологичные хромосомы спариваются (конъюгируют), позднее в каждой хромосоме будут видны две хроматиды (на этой стадии происходит кроссинговер); В — метафаза I: ориентация спаренных хромосом в экваториальной плоскости, образование аппарата веретена; Г — анафаза I: гомологичные центромеры движутся к противоположным полюсам веретена, затем следует телофаза I, и первое мейотическое деление заканчивается (отражена ядерная мембрана; хромосомы удлиняются); Д — интерфаза II, за которой следует профаза II и метафаза II: центромеры делятся, затем происходит миграция гомологичных хроматид к противоположным полюсам; Е — анафаза II; Ж — конечный результат; четыре гаплоидные клетки.

В движении хромосом к полюсам клетки ведущая роль принадлежит центромерам, которые активно перемещаются к полюсам клетки.

Условием, которое способствует движению хромосом в живой клетке, является понижение вязкости цитоплазмы. АТФ, необходимая для сокращения нитей веретена, поступает из митохондрий, которые в анафазе обычно располагаются в ряд, по наружной поверхности веретена.

Следует сказать, что причины движения хромосом в анафазе к полюсам клетки еще недостаточно изучены. Считают, что редуплицирующиеся центромеры имеют одноименный заряд и отталкиваются друг от друга.

Полюсы клетки обладают притягательной силой по отношению к хромосомам. По мере расхождения центромер между ними формируются дополнительные нити веретена деления.

По мере роста оно как бы расталкивает хромосомы к полюсам клетки.

После расхождения хромосом к полюсам клетки наступает последняя фаза митоза — телофаза.

В телофазе две группы хромосом собираются в довольно плотные комки, деспирализуются и становятся невидимыми. На каждом из полюсов вокруг хромосом появляются отдельные пузырьки, которые, сливаясь, формируют внутреннюю ядерную мембрану. Наружная ядерная мембрана возникает из пузырьков и цистерн эндоплазматической сети. Образуются два новых ядра. В каждом ядре обособляются ядрышки.

В телофазе делится и цитоплазма: в ней появляется в полюсе экватора борозда, которая углубляется и делит клетку пополам. Нити веретена исчезают.

Таким образом, в результате митоза из одной клетки образуются две дочерние клетки, обладающие точно таким же набором хромосом, как и материнская клетка.

Ряд цитологов выделяют еще один своеобразный способ деления клетки — амитоз, в то время как другие ученые не рассматривают этот процесс как деление.

Ядро клетки постепенно удлиняется, перетягивается в форме восьмерки, после чего его половины расходятся к противоположным полюсам клетки. Вслед за этим делится и цитоплазма.

Иногда при амитозе ядро делится, а разделение цитоплазмы не происходит, и тогда образуются многоядерные клетки.

При амитозе деление ядра происходит без образования митотического аппарата и без спирализации хромосом.

Ядро увеличивается без изменения строения и разделяется на два.

Различают несколько видов амитоза:

1) генеративный характерен для полиплоидных клеток. Деление ядра в этом случае обеспечивает увеличение поверхности, контактирующей с цитоплазмой;

2) дегенеративный происходит в стареющих и гибнущих клетках;

3) реактивный вызывается действием на клетку лучистой энергии, различных химических веществ, препятствующих митотическому делению клетки.

Амитоз имеет место при делении опухолевых клеток, часто наблюдается при регенерации тканей, обеспечивая быстрое восполнение травматических дефектов.

Мейоз

Среди клеток тела животных исключение составляют половые клетки. В них содержится одиночный, или гаплоидный, т. е. уменьшенный вдвое, набор хромосом.

В оплодотворенной яйцеклетке человека содержится диплоидный набор — 46 хромосом.

При дроблении яйца и каждом последующем делении клеток хромосомы удваиваются и каждая из парных хромосом расходится в дочерние клетки, получающие каждая 46 хромосом.

Если бы сперматозоид и яйцеклетка содержали диплоидный набор хромосом, то после их слияния оплодотворенное яйцо получило бы 92 хромосомы. На самом деле этого не происходит.

В процессе эволюции возник и развился особый механизм, поддерживающий постоянство числа хромосом при оплодотворении.

Этот механизм связан с особым типом клеточного деления, благодаря которому в половые клетки попадает гаплоидный набор хромосом.

У человека половые клетки содержат 23 хромосомы, а после оплодотворения в зиготе объединяются 46 хромосом, одна половина которых принадлежит яйцеклетке, а другая — сперматозоиду.

При созревании половых клеток происходят два быстро следующих друг за другом деления, в результате которых число хромосом сокращается вдвое. Процесс деления клеток, ведущий к уменьшению числа хромосом в гаметах вдвое, называют мейозом (рис. 14).

Мейозу, как и митозу, предшествует подготовительная фаза, в течение которой хромосомы удваиваются, удваиваются и центриоли клеточного центра, накапливаются структурные белки, необходимые для построения веретена деления, происходит усиленное образование АТФ. Однако, в отличие от митоза, редупликация (удвоение) хромосом растянута во времени и продолжается в профазе первого мейотического деления.

В начальный период профазы хромосомы имеют вид тонких нитей. Затем они укорачиваются, и начинается их спирализация. В этот период гомологичные хромосомы плотно прикладываются друг к другу, происходит их конъюгация (временное сближение).

Через некоторое время между хромосомами возникают силы отталкивания, и они начинают отходить друг от друга, становится очевидным, что некоторые парные хромосомы обменялись гомологичными участками. Это явление (кроссинговер, или перекрест хромосом) обеспечивает перераспределение генетического материала, увеличивает наследственную изменчивость организмов.

В конце профазы сдвоенные хромосомы располагаются у плоскости экватора. В анафазу гомологичные хромосомы расходятся. У каждого полюса сосредоточивается гаплоидный набор хромосом.

В течение короткой телофазы формируются две клетки, каждая из которых уже имеет гаплоидный набор хромосом. Обе клетки снова приступают к делению. Второе деление протекает очень быстро, как обычный митоз, ему не предшествует интерфаза, поэтому содержание ДНК не удваивается и синтез белков не происходит.

Во втором делении каждая из хромосом, удвоение которой произошло еще в профазе первого мейотического деления (редукционного), расходится по дочерним клеткам, которые получают по одной хромосоме из каждой гомологичной пары.

В результате мейоза из одной половой клетки образуются четыре клетки, каждая из которых имеет половинное (гаплоидное) число хромосом.

Так в семенниках и яичниках образуются зрелые мужские и женские половые клетки, которые у человека содержат по 23 хромосомы.

При созревании женских половых клеток (овогенез)из четырех образовавшихся в результате мейоза клеток только одна, обладающая большим размером, превращается в зрелую яйцеклетку, три маленькие клетки (также с гаплоидным набором хромосом) дегенерируют. При сперматогенезе (созревании сперматозоидов) каждая из четырех образовавшихся в результате мейоза клеток является зрелой с гаплоидным набором хромосом.

Статья на тему Деление клеток

Источник: https://znaesh-kak.com/m/a/%D0%B4%D0%B5%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BA%D0%BB%D0%B5%D1%82%D0%BE%D0%BA

Процесс деления клетки

За счет деления клеток

Индивидуальное развитие (онтогенез) любого организма начинается с одной клетки. Эта клетка подвергается процессу деления, что для одноклеточных организмов равнозначно размножению, а для многоклеточных — формированию нового организма. Поэтому процессы деления клеток имеют большое значение в жизни любых организмов.

По характеру протекания процесса деления клетки различают прямое деление (амитоз) и непрямое деление (митоз). При амитозе и митозе дочерние клетки получают диплоидный набор хромосом и количество ядерного вещества составляет «2n».

В результате вышеназванных видов деления образуются соматические клетки (клетки тела). При образовании спор (у растений) и гамет (у животных) происходит непрямое деление с уменьшением числа хромосом в два раза. Этот вид деления клеток называют мейозом.

В данном подразделе будут рассмотрены амитоз и митоз.

Краткая характеристика амитоза

Деление, при котором строение делящейся клетки практически не претерпевает существенных изменений, называется амитозом, или прямым делением.

В процессе амитоза клетка и ядро удлиняются, образуется перетяжка и в конечном результате из одной родительской клетки возникают две дочерние. Амитотически делятся клетки амебы и других простейших одноклеточных организмов.

Недостатком амитоза является то, что возможно неравномерное распределение ядерного вещества между дочерними клетками, что может способствовать вырождению данного вида. Этот тип деления встречается довольно редко, а у высокоорганизованных организмов не встречается совсем.

Общая характеристика митоза

Процесс деления клетки, при котором её строение подвергается существенным изменениям, возникновением новых структур и реализацией строго определенных стадий, называется непрямым делением, или митозом.

При митозе дочерние клетки получают диплоидный набор хромосом и такое же количество ядерного вещества, которое характерно для нормально функционирующей соматической родительской клетки.

Митоз осуществляется при размножении соматических (клеток тела) клеток, например, в меристемах (тканях роста) растений или в активных зонах деления у животных (в кроветворных органах, в коже и т. д.). Для животных организмов состояние деления характерно в молодом возрасте, но оно может осуществляться и в зрелом возрасте в соответствующих органах (кожа, органы кроветворения и др.).

Митоз представляет собой последовательность строго определенных процессов, которые протекают по стадиям. Митоз состоит из четырех фаз: профазы, метафазы, анафазы и телофазы. Общая длительность митоза составляет 2-8 часов. Рассмотрим фазы митоза более подробно.

1. Профаза (первая фаза митоза) — самая длительная. Во время профазы в ядре появляются хромосомы (за счет спирализации молекул ДНК). Ядрышко растворяется. Четко проявляются все хромосомы. Центриоли клеточного центра расходятся к разным полюсам клетки и между центриолями формируется «веретено деления». Ядерная оболочка растворяется, и хромосомы попадают в цитоплазму. Профаза завершается.

Следовательно, в результате профазы формируется «веретено деления», состоящее из двух центриолей, находящихся в разных полюсах клетки и связанных между собой двумя типами нитей — опорными и тянущими. В цитоплазме имеется диплоидный набор хромосом, каждая из которых содержит двойное (по отношению к норме) количество ядерного вещества и имеет перетяжку вдоль большой оси симметрии.

2. Метафаза (вторая фаза деления). Иногда ее называют «фаза звезды», так как при виде сверху хромосомы образуют некоторое подобие звезды. Во время метафазы хромосомы выражены в наибольшей степени.

В метафазе хромосомы перемещаются в центр клетки и прикрепляются центромерами к тянущим нитям веретена, что приводит к возникновению строго упорядоченной структуры расположения хромосом в клетке.

После прикрепления к тянущей нити каждая хроматиновая нить разделяется на две части, за счет чего каждая хромосома напоминает как бы слепленные в районе центромеры хромосомы.

В конце метафазы центромера разделяется вдоль (параллельно хроматиновым нитям) и образуется тетраплоидное количество хромосом. На этом метафаза завершается.

Итак, в конце метафазы возникает тетраплоидное количество хромосом (4n), одна половина которых прикреплена к нитям, тянущим эти хромосомы к одному полюсу, а вторая половина — к другому полюсу.

3. Анафаза (третья фаза, следует за метафазой). При анафазе (начальный период) тянущие нити веретена сокращаются и за счет этого хромосомы расходятся к разным полюсам делящейся клетки. Каждая из хромосом характеризуется нормальным количеством ядерного вещества.

К концу анафазы хромосомы концентрируются у полюсов клетки, а на опорных нитях веретена в центре клетки (на «экваторе») возникают утолщения. На этом анафаза завершается.

4. Телофаза (последняя стадия митоза). Во время телофазы происходят следующие изменения: возникшие в конце анафазы утолщения на опорных нитях увеличиваются и сливаются, образуя первичную мембрану, отделяющую одну дочернюю клетку от другой.

В итоге возникают две клетки, содержащие диплоидный набор хромосом (2n). На месте первичной мембраны образуется перетяжка между клетками, которая углубляется, и к концу телофазы одна клетка отделяется от другой.

Одновременно с формированием клеточных оболочек и разделением исходной (материнской) клетки на две дочерние происходит окончательное формирование молодых дочерних клеток.

Хромосомы мигрируют в центр новых клеток, тесно сближаются, молекулы ДНК деспирализуются и хромосомы как отдельные образования исчезают.

Вокруг ядерного вещества формируется ядерная оболочка, возникает ядрышко, т. е. происходит формирование ядра.

В это же время формируется и новый клеточный центр, т. е. из одной центриоли образуется две (за счет деления), между возникшими центриолями появляются тянущие опорные нити. Телофаза на этом завершается, а вновь возникшие клетки вступают в свой цикл развития, который зависит от местонахождения клеток и их будущей роли.

Путей развития дочерних клеток несколько. Один из них состоит в том, что вновь возникшие клетки специализируются на выполнении конкретных функций, например, становятся форменными элементами крови. Пусть часть из этих клеток становится эритроцитами (красными кровяными тельцами).

Такие клетки растут, достигая определенного размера, затем они теряют ядро и заполняются дыхательным пигментом (гемоглобином) и становятся зрелыми, способными к выполнению своих функций.

Для эритроцитов — это способность реализации газообмена между тканями и органами дыхания, осуществляя перенос молекулярного кислорода (O2) из органов дыхания к тканям и углекислый газ из тканей к органам дыхания. Молодые эритроциты попадают в кровяное русло, где функционируют 2-3 месяца, а затем погибают.

Вторым путем развития дочерних клеток тела является вступление их в митотический цикл.

Краткая характеристика митотического цикла

Митотический цикл — это временной отрезок существования клетки от одного деления до другого, включающий митоз (время деления, при котором из родительской клетки появляются две дочерние), и интерфазу (время, в течение которого возникшие клетки становятся способными к новому делению).

Следовательно, митотический цикл состоит из двух временных пластов: времени митоза и времени интерфазы. Интерфаза занимает 24/25 от всего митотического цикла и подразделяется на три периода. Ниже кратко охарактеризованы периоды интерфазы.

1. Пресинтетический период (G1). Он начинается сразу после полного завершения телофазы и составляет примерно половину времени интерфазы. В этот период на деспирализованных хромосомах (деспирализованных молекулах ДНК) происходит синтез РНК всех видов. В ядрышках образуются зародыши рибосом.

В митохондриях интенсивно синтезируется АТФ, т. е. в клетке накапливается энергия в «удобной» для организма форме (она может в дальнейшем легко использоваться в процессах синтеза нужных организму веществ).

Одновременно протекает интенсивный синтез молекул белка. Все эти процессы подготавливают синтетический период, в котором происходит синтез ДНК.

2. Синтетический период (S).

Во время этой стадии интерфазы синтезируется ДНК, т. е. происходит редупликация, или репликация. Под влиянием ферментов двойные цепи ДНК превращаются в одинарные и на них по принципу комплементарности (взаимодополнения) возникают новые двойные цепи ДНК.

В конце синтетического периода в клетке возникает тетраплоидное количество ДНК (4c), но сохраняется диплоидный набор хромосом (2n).

После того как в клетках возникает тетраплоидное количество вещества, синтетический период завершается и клетка вступает в последний период интерфазы — постсинтетический.

3. Постсинтетический период (G2).

Этот период завершает интерфазу. Он относительно короток во времени. В течение данного периода происходит дополнительный синтез белков и АТФ. Клетки достигают предельных размеров, в них окончательно формируются все структуры. В конце постсинтетического периода клетки готовы к новому делению.

В заключение необходимо отметить, что синтез веществ происходит во все периоды интерфазы. Выделение синтетического периода связано с тем, что его существенным отличием от других периодов является то, что в это время синтезируется ДНК, ее в клетке становится вдвое больше нормы и это создает предпосылки для нового деления клетки.

Продолжительность митотического цикла определяют по формулам:

Ц = М + И

Ц = М + G1 + S + G2, где М — продолжительность митоза; И — продолжительность интерфазы; G1 — продолжительность пресинтетического периода; S — продолжительность синтетического периода; G2 — продолжительность постсинтетического периода; G1 + G2 + S = И.

Источник: https://www.polnaja-jenciklopedija.ru/biologiya/protsess-deleniya-kletki.html

Деление клеток. Митоз и мейоз, фазы деления

За счет деления клеток

Размножение клеток – один из важнейших биологических процессов, является необходимым условием существования всего живого. Репродукция осуществляется путем деления исходной клетки.

Клетка – это наименьшая морфологическая единица строения любого живого организма, способная к самопроизводству и саморегуляции. Время ее существования от деления до гибели или же последующей репродукции называется клеточным циклом.

Ткани и органы состоят из различных клеток, которые имеют свой период существования. Каждая из них растет и развивается, чтобы обеспечивать жизнедеятельность организма. Длительность митотического периода различна: клетки крови и кожи входят в процесс деления каждые 24 часа, а нейроны способны к репродукции только у новорожденных, а затем вовсе утрачивают способность к размножению.

Существует 2 вида деления — прямое и непрямое. Соматические клетки размножаются непрямым путем, гаметам или половым клеткам присущ мейоз (прямое деление).

Митоз — непрямое деление

Митотический цикл

Митотический цикл включает 2 последовательных этапа: интерфазу и митотическое деление.

Интерфаза (стадия покоя) – подготовка клетки к дальнейшему разделению, где совершается дублирование исходного материала, с последующим его равномерным распределением между новообразованными клетками. Она включает 3 периода:

    • Пресинтетический (G-1) G – от английского gar, то есть промежуток, идет подготовка к последующему синтезу ДНК, выработка ферментов. Экспериментально проводилось ингибирование первого периода, вследствие чего клетка не вступала в следующую фазу.
    • Синтетический (S) — основа клеточного цикла. Происходит репликация хромосом и центриолей клеточного центра. Только после этого клетка может перейти к митозу.
    • Постсинтетический (G-2) или премитотический период — происходит накопление иРНК, которая нужна для наступления собственно митотического этапа. В G-2 периоде синтезируются белки (тубулины) – основная составляющая митотического веретена.

После окончания премитотического периода начинается митотическое деление. Процесс включает 4 фазы:

  1. Профаза – в этот период разрушается ядрышко, растворяется мембрана ядра (нуклеолема), центриоли располагаются на противоположных полюсах, формируя аппарат для деления. Имеет две подфазы:
    • ранняя — видны нитеобразные тела (хромосомы), они еще не четко отделены друг от друга;
    • поздняя — прослеживаются отдельные части хромосом.
  2. Метафаза – начинается с момента разрушения нуклеолемы, когда хромосомы хаотично лежат в цитоплазме и только начинают двигаться к экваториальной плоскости. Между собой все пары хроматид связаны в месте центромеры.
  3. Анафаза – в один момент разобщаются все хромосомы и движутся к противоположным точкам клетки. Это короткая и очень важная фаза, поскольку именно в ней происходит точный раздел генетического материала.
  4. Телофаза – хромосомы останавливаются, снова образуется ядерная мембрана, ядрышка. Посередине образуется перетяжка, она делит тело материнской клетки на две дочерние, завершая митотический процесс. В новообразованных клетках снова начинается G-2 период.

Мейоз — прямое деление

Мейоз — прямое деление

Существует особый процесс репродукции, встречающийся только в половых клетках (гаметах) – это мейоз (прямое деление).

Отличительной чертой для него является отсутствие интерфазы. Мейоз из одной исходной клетки дает четыре, с гаплоидным набором хромосом.

Весь процесс прямого деления включает два последовательных этапа, которые состоят из профазы, метафазы, анафазы и телофазы.

Перед началом профазы у половых клетках происходит удвоение исходного материала, таким образом, она становится тетраплоидной.

Профаза 1:

  1. Лептотена — хромосомы просматриваются в виде тоненьких ниток, происходит их укорочение.
  2. Зиготена — стадия конъюгации гомологичных хромосом, как следствие образуются биваленты. Конъюгация важный момент мейоза, хромосомы максимально сближаются друг с другом, чтобы осуществить кроссинговер.
  3. Пахитена — происходит утолщение хромосом, их все большее укорочение, идет кроссинговер (обмен генетической информацией между гомологичными хромосомами, это основа эволюции и наследственной изменчивости).
  4. Диплотена – стадия удвоенных нитей, хромосомы каждого бивалента расходятся, сохраняя связь только в области перекреста (хиазмы).
  5. Диакинез — ДНК начинает конденсироваться, хромосомы становятся совсем короткими и расходятся.

Профаза заканчивается разрушением нуклеолемы и формированием веретена деления.

Метафаза 1: биваленты расположены посередине клетки.

Анафаза 1:к противоположным полюсам движутся удвоенные хромосомы.

Телофаза 1:завершается процесс деления, клетки получают по 23 бивалента.

Без последующего удвоения материала клетка вступает во второй этап деления.

Профаза 2: снова повторяются все процессы, которые были в профазе 1,а именно конденсация хромосом, что хаотично располагаются между органеллами.

Метафаза 2: две хроматиды, соединенные в месте перекреста (униваленты), располагаются в экваториальной плоскости, создавая пластинку, названную метафазной.

Анафаза 2: — унивалент разделяется на отдельные хроматиды или монады, и они направляются к разным полюсам клетки.

Телофаза 2: процесс деления завершается, формируется ядерная оболочка, и каждая клетка получает по 23 хроматиды.

Мейоз – важный механизм в жизни всех организмов.

В результате такого деления мы получаем 4 гаплоидные клетки, которые имеют половину нужного набора хроматид.

Во время оплодотворения две гаметы образуют полноценную диплоидную клетку, сохраняя присущей ей кариотип.

Сложно представить наше существования без мейотического деления, иначе все организмы с каждым последующим поколение получали бы удвоенные наборы хромосом.

Оцените, пожалуйста, статью. Мы старались:) (7 5,00 из 5)
Загрузка…

Источник: https://animals-world.ru/delenie-kletok/

Митоз и мейоз

За счет деления клеток

С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.

Здесь и в дальнейшем мы будем пользоваться генетической формулой клетки, где “n” – число хромосом, а “c” – число ДНК (хроматид). Напомню, что в состав каждой хромосомы может входить как одна молекула ДНК (одна хроматида) (nc), либо две (n2c).

Клеточный цикл включает в себя несколько этапов: деление (митоз), постмитотический (пресинтетический), синтетический, постсинтетический (премитотический) период. Три последних периода составляют интерфазу – подготовку к делению клетки.

Разберем периоды интерфазы более подробно:

  • Постмитотический период G1 – 2n2c
  • Интенсивно образуются рибосомы, синтезируется АТФ и все виды РНК, ферменты, делятся митохондрии, клетка растет.

  • Синтетический период S – 2n4c
  • Длится 6-10 часов. Важнейшее событие этого периода – удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид. Активно синтезируются структурные белки ДНК – гистоны.

  • Премитотический период G2 – 2n4c
  • Короткий, длится 2-6 часов. Это время клетка тратит на подготовку к последующему процессу – делению клетки, синтезируются белки и АТФ, удваиваются центриоли.

Митоз (греч. μίτος – нить)

Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.

Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.

  • Профаза – 2n4c
    • Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры – хромосомы – происходит это за счет спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)
    • Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
    • Центриоли перемещаются к полюсам клетки, образуются центры веретена деления
  • Метафаза – 2n4c
  • ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).

  • Анафаза – 4n4c
  • Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления тянут хроматиды (синоним – дочерние хромосомы) к полюсам клетки.

  • Телофаза – 2n2c
  • В этой фазе хроматиды (дочерние хромосомы) достигают полюсов клетки.

    • Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный моток ниток)
    • Появляется ядерная оболочка, формируется ядро
    • Разрушаются нити веретена деления

    В телофазе происходит деление цитоплазмы – цитокинез (цитотомия), в результате которого образуются две дочерние клетки с набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений – формированием плотной клеточной стенки (которая растет изнутри кнаружи).

Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит удвоение ДНК, после чего каждая хромосома состоит из двух хроматид – 2n4c. Клетка с набором 2n4c и попадает в профазу митоза. Так замыкается клеточный цикл.

Биологическое значение митоза очень существенно:

  • В результате митоза образуются дочерние клетки – генетические копии (клоны) материнской.
  • Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных организмов).
  • Универсальность митоза служит очередным доказательством единства всего органического мира.

Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).

Мейоз

Мейоз (от греч. μείωσις — уменьшение), или редукционное деление клетки – способ деления клетки, при котором наследственный материал в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.

В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).

Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление называют редукционным (лат. reductio – уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление – эквационное (лат. aequatio — уравнивание) очень похоже на митоз.

Приступим к изучению первого деления мейоза. За основу возьмем клетку с двумя хромосомами и удвоенным (в синтетическом периоде интерфазы) количеством ДНК – 2n4c.

  • Профаза мейоза I
  • Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.

    Конъюгация (лат. conjugatio — соединение) – сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы, состоящие из двух хромосом – биваленты (лат. bi – двойной и valens – сильный).

    После конъюгации становится возможен следующий процесс – кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.

    Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.

  • Метафаза мейоза I
  • Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.

  • Анафаза мейоза I
  • Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки – n2c, за счет чего мейоз I и называется редукционным делением.

  • Телофаза мейоза I
  • Происходит цитокинез – деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза после мейоза I сменяется новым делением – мейозом II.

Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).

В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку – nc. В этом и состоит сущность мейоза – образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит, когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки – половые клетки (гаметы).

Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.

Помните, что до мейоза происходит удвоение ДНК в синтетическом периоде. Из-за этого уже в начале мейоза вы видите их увеличенное число – 2n4c (4 хромосомы, 8 молекул ДНК). Я понимаю, что хочется написать 4n8c, однако это неправильная запись!) Ведь наша исходная клетка диплоидна (2n), а не тетраплоидна (4n) ;)

Итак, самое время обсудить биологическое значение мейоза:

  • Поддерживает постоянное число хромосом во всех поколениях, предотвращает удвоение числа хромосом
  • Благодаря кроссинговеру возникают новые комбинации генов, обеспечивается генетическое разнообразие состава гамет
  • Потомство с новыми признаками – материал для эволюции, который проходит естественный отбор

Бинарное деление надвое

Митоз и мейоз возможен только у эукариот, а как же быть прокариотам – бактериям? Они изобрели несколько другой способ и делятся бинарным делением надвое. Оно встречается не только у бактерий, но и у ряда ядерных организмов: амебы, инфузории, эвглены зеленой.

При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.

Амитоз (от греч. ἀ – частица отрицания и μίτος – нить)

Способ прямого деления клетки, при котором не происходит образования веретена деления и равномерного распределения хромосом. Клетки делятся напрямую путем перетяжки, наследственный материал распределяется “как кому повезет” – случайным образом.

Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.

Источник: https://studarium.ru/article/122

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: