Какие органоиды есть у бактерий

Содержание
  1. Особенности строения бактериальной клетки. Основные органеллы и их функции ⋆ Педиатрия
  2. 1) основные органеллы:
  3. 2) дополнительные органеллы:
  4. 2. Строение клеточной стенки и цитоплазматической мембраны
  5. 3. Дополнительные органеллы бактерий
  6. Какие органоиды есть у бактерий
  7. Зачем бактериям перемещаться
  8. Органоиды движения
  9. Способы передвижения бактерий
  10. Пили
  11. Жгутики
  12. Слизь
  13. Газовые вакуоли
  14. Движение микоплазм
  15. Гипотетические способы
  16. Откуда бактерии знают, куда им двигаться
  17. Вопрос-ответ
  18. Как перемещаются бактерии
  19. Способны ли бактерии самостоятельно передвигаться
  20. Что используют почвенные бактерии для передвижения
  21. Участвует ли капсула в перемещении бактерий
  22. Определение движения микроорганизмов
  23. Функции бактериальной клетки и органоидов: мезосом, нуклеоида,капсулы, цитоплазмы, рибосом, клеточной стенки
  24. Зачем нужны одноклеточные организмы
  25. Как устроена бактерия
  26. Ядро в безъядерной клетке
  27. Каркас для одноклеточных
  28. Что такое ЦПМ и мезосомы
  29. Рибосомы – основа белковой жизни
  30. Дополнительные структуры прокариот
  31. Органоиды клетки, подготовка к егэ по биологии
  32. Что мы узнали?
  33. Строение бактериальной клетки
  34. Особенности строения бактериальной клетки. Основные органеллы и их функции
  35. Химический состав, организация и функции поверхностных структур бактериальной клетки: капсулы, чехлы, фимбрии, пили

Особенности строения бактериальной клетки. Основные органеллы и их функции ⋆ Педиатрия

Какие органоиды есть у бактерий

1. Бактерии относятся к прокариотам, т. е. не имеют обособ-ленного ядра.2. В клеточной стенке бактерий содержится особый пептидо-гликан — муреин.3.

В бактериальной клетке отсутствуют аппарат Гольджи, эндо-плазматическая сеть, митохондрии.4. Роль митохондрий выполняют мезосомы — инвагинациицитоплазматической мембраны.5. В бактериальной клетке много рибосом.6.

У бактерий могут быть специальные органеллы движения —жгутики.

7. Размеры бактерий колеблются от 0,3—0,5 до 5—10 мкм.

По форме клеток бактерии подразделяются на кокки, палочки и извитые.
В бактериальной клетке различают:

1) основные органеллы:

а) нуклеоид;б) цитоплазму;в) рибосомы;г) цитоплазматическую мембрану;

д) клеточную стенку;

2) дополнительные органеллы:

а) споры;б) капсулы;в) ворсинки;г) жгутики.Цитоплазма представляет собой сложную коллоидную систе-

му, состоящую из воды (75%), минеральных соединений, белков, РНК и ДНК, которые входят в состав органелл нуклеоида, рибосом, мезосом, включений.

Нуклеоид — ядерное ещество, распыленное в цитоплазме
клетки. Не имеет ядерной мембвраны, ядрышек. В нем локализуется ДНК, представленная двухцепочечной спиралью. Обычно замкнута в кольцо и прикреплена к цитоплазматической мембране.

Содержит около 60 млн пар оснований. Это чистая ДНК, она неcодержит белков гистонов. Их защитную функцию выполняютметилированные азотистые основания. В нуклеоиде закодирована

основная генетическая информация, т. е. геном клетки.

Наряду с нуклеоидом в цитоплазме могут находиться авто-

номные кольцевые молекулы ДНК с меньшей молекулярной массой — плазмиды. В них также закодирована наследственная информация, но она не является жизненно необходимой для бактериальной клетки.

Рибосомы представляют собой рибонуклеопротеиновые частицы размером 20 нм, состоящие из двух субъединиц — 30 S и 50 S.Рибосомы отвечают за синтез белка. Перед началом синтеза бел-ка происходит объединение этих субъединиц в одну — 70 S. В отличие от клеток эукариотов рибосомы бактерий не объединены в эндоплазматическую сеть.Мезосомы являются производными цитоплазматической мембраны.

Мезосомы могут быть в виде концентрических мембран, пузырьков, трубочек, в форме петли. Мезосомы связаны с нуклеоидом. Они участвуют в делении клетки и спорообразовании.Включения являются продуктами метаболизма микроорганиз-мов, которые располагаются в их цитоплазме и используютсяв качестве запасных питательных веществ.

К ним относятсявключения гликогена, крахмала, серы, полифосфата (волютина)

и др.

2. Строение клеточной стенки
и цитоплазматической мембраны

Клеточная стенка — упругое ригидное образование толщи-ной 150—200 ангстрем. Выполняет следующие функции:1) защитную, осуществление фагоцитоза;2) регуляцию осмотического давления;3) рецепторную;

4) принимает участие в процессах питания деления клетки;

5) антигенную (определяется продукцией эндотоксина — основного соматического антигена бактерий);6) стабилизирует форму и размер бактерий;7) обеспечивает систему коммуникаций с внешней средой;8) косвенно участвует в регуляции роста и деления клетки.

Клеточная стенка при обычных способах окраски не видна, ноесли клетку поместить в гипертонический раствор (при опытеплазмолиза), то она становится видимой.

Клеточная стенка вплотную примыкает к цитоплазматическоймембране у грамположительных бактерий, у грамотрицательныхбактерий клеточная стенка отделена от цитоплазматической мембраны периплазматическим пространством.

Клеточная стенка имеет два слоя:

1) наружный — пластичный;2) внутренний — ригидный, состоящий из муреина.В зависимости от содержания муреина в клеточной стенке различают грамположительные и грамотрицательные бактерии (по отношению к окраске по Грамму).У грамположительных бактерий муреиновый слой составляет 80% от массы клеточной стенки. По Грамму, они окрашиваются в синий цвет. У грамположительных бактерий муреиновыйслой составляет 20% от массы клеточной стенки, по Грамму, ониокрашиваются в красный цвет.У грамположительных бактерий наружный слой клеточнойстенки содержит липопротеиды, гликопротеиды, тейхоевые кис-лоты, у них отсутствует липополисахаридный слой. Клеточнаястенка выглядит аморфной, она не структурирована. Поэтому приразрушении муреинового каркаса бактерии полностью теряютклеточную стенку (становятся протопластами), не способнык размножению.У грамотрицательных бактерий наружный пластическийслой четко выражен, содержит липопротеиды, липополисахаридный слой, состоящий из липида А (эндотоксина) и полисахарида(О-антигена). При разрушении грамотрицательных бактерий образуются сферопласты — бактерии с частично сохраненной клеточной стенкой, не способные к размножению.К клеточной стенке прилегает цитоплазматическая мембрана.Она обладает избирательной проницаемостью, принимает участиев транспорте питательных веществ, выведении экзотоксинов,энергетическом обмене клетки, является осмотическим барьером,участвует в регуляции роста и деления, репликации ДНК, является стабилизатором рибосом.Имеет обычное строение: два слоя фосфолипидов (25—40%) и белки.

По функции мембранные белки разделяют на:

1) структурные;2) пермиазы — белки транспортных систем;3) энзимы — ферменты.Липидный состав мембран непостоянен. Он может менятьсяв зависимости от условий культивирования и возраста культуры.Разные виды бактерий отличаются друг от друга по липидному

составу своих мембран.

3. Дополнительные органеллы бактерий

Ворсинки (пили, фимбрии) — это тонкие белковые выросты наповерхности клеточной стенки. Функционально они различны. Различают комон-пили и секс-пили. Комон-пили отвечают за адгезиюбактерий на поверхности клеток макроорганизма. Они характерныдля грамположительных бактерий.

Секс-пили обеспечивают контакт между мужскими и женскими бактериальными клеткамив процессе конъюгации. Через них идет обмен генетической ин-формацией от донора к реципиенту. Донор — мужская клетка —обладает секс-пили. Женская клетка — реципиент — не имеетсекc-пили.

Белок секс-пили колируется генами F-плазмиды.

Жгутики — органеллы движения. Есть у подвижных бактерий. Это особые белковые выросты на поверхности бактериальной клетки, содержащие белок — флагелин. Количество и расположение жгутиков может быть различным.

Различают:1) монотрихи (имеют один жгутик);2) лофотрихи (имеют пучок жгутиков на одном конце клетки);3) амфитрихи (имеют по одному жгутику на каждом конце);4) перитрихи (имеют несколько жгутиков, расположенных попериметру).О подвижности бактерий судят, рассматривая живые микро-организмы, либо косвенно — по характеру роста в среде Пешко-ва (полужидком агаре). Неподвижные бактерии растут строго по

уколу, а подвижные дают диффузный рост.

Капсулы представляют собой дополнительную поверхностную оболочку. Они образуются при попадании микроорганизма
в макроорганизм. Функция капсулы — защита от фагоцитоза и антител.

Различают макро- и микрокапсулы. Макрокапсулу можно выявить, используя специальные методы окраски, сочетая позитивные и негативные методы окраски. Микрокапсула — утолщениеверхних слоев клеточной стенки.

Обнаружить ее можно только

https://www.youtube.com/watch?v=KKK-ueKi_M0

при электронной микроскопии. Микрокапсулы характерны для вирулентных бактерий.

Среди бактерий различают:

1) истиннокапсульные бактерии (род Klebsiella) — сохраняюткапсулообразование и при росте на питательных средах, а не

только в макроорганизме;

2) ложнокапсульные — образуют капсулу только при попадании в макроорганизм.
Капсулы могут быть полисахаридными и белковыми. Они играют роль антигена, могут быть фактором вирулентности.

Споры — это особые формы существования некоторых бактерий при неблагоприятных условиях внешней среды. Спорообразование присуще грамположительным бактериям. В отличие отвегетативных форм споры более устойчивы к действию химических, термических факторов.

Чаще всего споры образуют бактерии рода Bacillus и Clostridium.Процесс спорообразования заключается в утолщении всехоболочек клетки. Они пропитываются солями дипикалината кальция, становятся плотными, клетка теряет воду, замедляются всеее пластические процессы.

При попадании споры в благоприятные условия она прорастает в вегетативную форму.

У грамотрицательных бактерий также обнаружена способность сохраняться в неблагоприятных условиях в виде некультивируемых форм. При этом нет типичного спорообразования, но в таких клетках замедлены метаболические процессы, невозможно сразу получить рост на питательной среде. Но при попадании в макроорганизм они превращаются в исходные формы.

Источник: https://pediatrino.ru/mikrobiologiya-i-virusologiya/osobennosti-stroeniya-bakterialnoj-kletki-osnovnye-organelly-i-ih-funktsii/

Какие органоиды есть у бактерий

Какие органоиды есть у бактерий

Движение бактерий (таксис) осуществляется с помощью сокращений, выделяемой слизи, газовых вакуолей, жгутиков или других отростков на поверхности тела.

В зависимости от способа передвижения различают плавание, катание по слизи, изгибание, дрожание и кувыркание.

Направленность перемещения определяется действием химических веществ, света и кислорода, изменением концентрации раствора, температурными показателями.

Зачем бактериям перемещаться

Передвигаясь, прокариоты имеют возможность добираться до питательных веществ и других привлекательных вещей, без которых невозможна их жизнедеятельность. Также эта способность помогает им избегать опасности.

Перемещаясь, бактерии попадают в нужные им условия и избегают неблагоприятных.

Двигаясь в сторону источника питания или в противоположном направлении от репеллента (репеллентом называют вещество или явление, «отпугивающее» бактерию), микроорганизмы совершают серию прямолинейных движений.

Движения чередуются с остановкой и переориентацией в зависимости от концентрации привлекающего и отпугивающего вещества.

Таким способом прокариоты получают возможность добраться до конечной точки назначения, без учета направления движения среды и других тормозящих факторов.

В нормальной (изотропной) среде целенаправленное движение бактерий отсутствует, а длина прямолинейных отрезков перемещения остается примерно одинаковой.

Органоиды движения

Бактерии осуществляют движение с помощью:

  • жгутиков;
  • ворсинок;
  • выделяемой слизи;
  • сокращения и распрямления клетки;
  • механизма отталкивания в момент резкого выброса порции слизи;
  • газовых вакуолей.

Органеллы движения бактерий различаются строением, количеством и расположением, определяя этим способ и скорость перемещения микроорганизма.

Способы передвижения бактерий

Различают несколько типов движения бактерий.

  1. Скольжение, характерное для миксобактерий, цитофагов и микоплазм. Скорость передвижения невысока – от 2 до 11 мкм/с.
  2. Вращение, присущее спирохетам. Они передвигаются с высокой скоростью благодаря собственным колебаниям.
  3. Перемещение с помощью жгутиков и ворсинок.

Еще один способ таксиса, или направленного перемещения, обусловлен внешними факторами:

  • хемотаксис — за счет присутствия химических реагентов или питательных веществ;
  • фототаксис — в зависимости от света;
  • аэротаксис — под влиянием кислорода;
  • магнитотаксис — в зависимости от присутствия молекул железа;
  • вискозитаксис — за счет изменения концентрации или вязкости раствора.

Пили

Органы движения бактерий, называемые пилями, представляют собой цилиндры. Они образованы молекулами белка – пилина. Их толщина составляет от 8.5 до 9.5 нм, а длина не превышает 1 мкм.

Такие ворсинки обеспечивают не только передвижение бактерий, но прикрепление их к живым клеткам макроорганизмов или питательным субстратам. Это происходит за счет адгезинов, покрывающих поверхность пилей полностью или частично.

Пили имеют различное строение и расположение, покрывая равномерно всю поверхность тела бактерий или концентрируясь на полюсах. Они обуславливают не только движение бактерий, но служат для передачи наследственной информации, отвечают за их выживаемость и адаптацию при изменении условий среды обитания.

Жгутики

Наиболее быстрое перемещение бактерий в пространстве может осуществляться при помощи жгутиков, образованных протеином флагеллином. Эти органоиды представляют собой тонкие спиралевидные структуры, состоящие из спиральной нити и базального тела, соединенных между собой крюком. Крепление к мембране и клеточной стенке осуществляется при помощи парных дисков.

Перемещение микроорганизмов вперед происходит благодаря вращению жгутиков против часовой стрелки, а назад — по ее ходу.

Данный механизм основан на способности бактериальных клеток преобразовывать электрохимическую энергию в механическую, используя разницу между концентрацией заряженных частиц на внешней и внутренней оболочке мембраны. Коэффициент полезного действия при этом настолько высок, что на вращение жгутика тратится лишь 0.1% общей энергии, расходуемой на поддержание всех процессов жизнедеятельности.

Классификация прокариотов по количеству и локализации жгутиков:

  • монотрихи, имеющие 1 жгутик;
  • перитрихи — жгутики равномерно распределены по всей поверхности стенки бактерий;
  • лофотрихи — сосредоточение множества жгутиков на одном конце бактериальной клетки;
  • амфитрихи — наличие одиночных жгутиков или их скопления на обоих полюсах.

Эта характеристика определяет направленность перемещения:

  • прямолинейное — лофо- и монотрихи;
  • беспорядочное движение (кувыркание) — перитрихи.

Повреждение клеточной стенки приводит к параличу жгутиков и потере микроорганизмами способности передвигаться. При этом бактерия остается живой.

У некоторых извитых форм бактерий сильно изгибающиеся движения происходят за счет оставшихся моторов жгутиков, утративших свои белковые нити. Еще один вариант – своеобразные «конвейерные ленты» под внутренней оболочкой клетки, по которым двигаются белки внешней мембраны.

Слизь

Безжгутиковые формы бактерий передвигаются с помощью скользящих движений. На полюсах этих прокариотов имеется около 200 структур, секретирующих слизь. Она выделяется через многочисленные поры клетки в направлении, противоположном ее перемещению.

Газовые вакуоли

Органоидами передвижения некоторых бактерий являются газовые вакуоли (аэросомы). Это газовые полости, расположенные внутри клетки. Они состоят из многочисленных продолговатых пузырьков, заключенных в защитную белковую оболочку.

Функция газовых вакуолей — обеспечение подвижности микроорганизмов в водной среде, возможность изменять глубину погружения.

Такой способ передвижения отмечен у некоторых почвенных бактерий, передвигающихся вверх и вниз по многочисленным капиллярам.

При увеличении аэросом происходит автоматическое снижение плотности бактериальной клетки, за счет чего происходит подъем на поверхность. Для обратного погружения микроорганизм избавляется от лишнего воздуха или начинает быстро накапливать тяжелые сахара.

Но при попадании в область высокого давления вакуоли быстро разрушаются, утрачивая способность к восстановлению.

Движение микоплазм

Среди микоплазм встречаются неподвижные формы, а также бактерии, характеристика движений которых носит скользящий тип при помощи выбрасывания порции слизи.

Для осуществления роения некоторые микоплазмы используют специфические пили. Чередование их сокращений и удлинений позволяет совершать медленные движения в пределах колонии.

Гипотетические способы

В микробиологии существуют гипотезы относительно некоторых способов движения бактерий. Одна из них — теория «бегущей волны». Согласно ей, на поверхности клетки во время вращения фибрилл, расположенных под наружной мембраной клеточной стенки, образуются движущиеся выпуклости. С их помощью микроорганизм отталкивается от твердого субстрата.

Откуда бактерии знают, куда им двигаться

Направленные движения бактерий определяются наличием в окружающей среде аттрактантов или репеллентов. Их распознавание происходит с помощью многочисленных белковых рецепторов, располагающихся на поверхности клеточных мембран. Каждая группа рецепторов реагирует на конкретный раздражитель, передавая сигнал о его наличии внутрь клетки.

Вместе с другими организмами, получившими аналогичный сигнал, прокариот начинает двигаться короткими прямолинейными отрезками. Но из-за столкновений с окружающими частицами такое движение в одном направлении длится не более 3 секунд. Затем оно может кардинально перенаправиться в противоположную сторону.

Не сбиться с пути прокариотам помогает механизм изменения вращения жгутиков. Вращаясь по часовой стрелке, микроорганизм останавливается и кувыркается с растопыренными в разные стороны жгутиками.

В этот момент он измеряет концентрацию необходимого вещества, меняет направление вращения, возвращается к прямолинейному движению.

Такая схема позволяет не сбиться с правильного направления среди большого количества бактерий и быстро достигнуть намеченной цели.

С помощью лабораторных исследований установлено, что длина отрезков пути увеличивается в зависимости от приближенности к объекту. За минуту прокариот может преодолеть расстояние, превышающее размеры его тела в 300-3000 раз. На этот показатель влияет вязкость среды, температура, концентрация аттрактанта и некоторые другие факторы.

Вопрос-ответ

Ученики часто сталкиваются с вопросами о передвижении бактерий на лабораторных работах и во время тестирования.

Как перемещаются бактерии

Прокариоты перемещаются с помощью жгутиков, ворсинок, слизи, газовых вакуолей, реактивных сокращений, волнообразных, сгибательных, вращательных движений и роения.

Способны ли бактерии самостоятельно передвигаться

У подвижных форм прокариотов существуют органеллы движения, позволяющие им передвигаться в определенном направлении. Для неподвижных микроорганизмов характерно броуновское движение.

Что используют почвенные бактерии для передвижения

Органами движения бактерий на твердом субстрате являются жгутики, пили и слизь, выделяемая по принципу «реактивной струи» в противоположном направлении относительно перемещения микроорганизма. В почвенных капиллярах прокариоты могут подниматься и опускаться благодаря газовым вакуолям.

Участвует ли капсула в перемещении бактерий

Нет. Капсула выполняет защитную функцию.

Определение движения микроорганизмов

Направленность движения (таксиса) прокариот определяется наличием привлекающих или отталкивающих внешних факторов, в качестве которых выступают питательные вещества, кислород, свет, молекулы железа, консистенция раствора и другие.

Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия. Табу: юриспруденция, политика, IT-технологии и компьютерные игры.

Источник: probakterii.ru

Источник: https://naturalpeople.ru/kakie-organoidy-est-u-bakterij/

Функции бактериальной клетки и органоидов: мезосом, нуклеоида,капсулы, цитоплазмы, рибосом, клеточной стенки

Какие органоиды есть у бактерий

Строение любого организма (и механизма, кстати, тоже) напрямую зависит от выполняемых функций. Например, для человека самый простой способ передвижения – ходьба, поэтому у нас есть ноги, автомобиль создан для езды, поэтому у него вместо ног колеса. Точно так же функции клетки бактерии определяют ее строение. И каждая из ее внутренних структур в точности соответствует своим функциям.

Зачем нужны одноклеточные организмы

Бактерии стояли у истоков жизни на нашей планете. Их вклад в образование полезных ископаемых и плодородных почв сложно переоценить. Они поддерживают баланс между углекислым газом и кислородом в атмосфере.

Их способность разрушать отмершие организмы позволяет возвращать в природу необходимые питательные вещества. В организме человека многие процессы, например, пищеварение, не смогут протекать без их участия.

Но те же самые бактериальные клетки, помогающие организму выжить, в определенных условиях могут нести болезни или смерть.

В зависимости от предназначения бактерии различаются по строению.

Так, микроорганизмы, выделяющие кислород, обязаны иметь хлоропласты; клетки, способные передвигаться, всегда оснащены жгутиками; бактерии, выживающие в агрессивной среде, не могут обойтись без защитной капсулы и т.д.

Некоторые из структурных элементов клетки существуют постоянно, другие ее компоненты возникают по мере необходимости или присущи только определенным видам бактерий. Но каждый элемент ее строения является примером идеального соответствия структуры выполняемым функциям.

Как устроена бактерия

Бактериальный организм – это всего лишь одна клетка. Вместо привычных органов, отвечающих за те или иные функции, у нее есть только своеобразные включения, именуемые органеллами.

Их набор может быть различным в зависимости от вида клетки или условий ее существования, но некий обязательный комплект внутренних структур в бактерии присутствует постоянно.

Именно они характеризуют клетку как бактериальную.

Бактериальная клетка относится к прокариотам – безъядерным одноклеточным организмам. Это означает, что в ее строении отсутствует мембрана, отделяющая ядро от цитоплазмы. Роль ядра в бактерии выполняет нуклеоид (замкнутая молекула ДНК). В прокариотической клетке есть основные и дополнительные органеллы (структуры). К ее основным структурам относят:

  • нуклеоид;
  • клеточную стенку (грамположительный или грамотрицательный защитный слой);
  • цитоплазматическую мембраны (тонкую прослойку между клеточной стенкой и цитоплазмой);
  • цитоплазму, в которой находятся нуклеоид и рибосомы (молекулы РНК).

Дополнительными органеллами (органоидами) клетка обзаводится при неблагоприятных условиях. Они могут появляться и исчезать в зависимости от окружающей среды. К необязательным структурам клетки относят капсулы, пили, споры, различные включения типа плазмид или зерен волютина.

Ядро в безъядерной клетке

Нуклеоид («подобный ядру») – один из важнейших органоидов в прокариотической клетке, выполняющий функции ядра. Он отвечает за хранение и передачу генетического материала.

Нуклеоид представляет собой замкнутую в кольцо молекулу ДНК, соответствующую одной хромосоме. Эта кольцевая молекула выглядит как беспорядочное переплетение нитей.

Однако, исходя из ее функций (точное распределение генов по дочерним организмам), становится понятно, что хромосома бактерий имеет высокоупорядоченную структуру.

Как правило, постоянной наружной формы эта органелла не имеет, но ее можно легко различить на фоне гелеподобной цитоплазмы в электронный микроскоп.

При исследовании с помощью обычного светового микроскопа бактерию необходимо предварительно окрасить, т. к. в естественном состоянии бактерии прозрачны и незаметны на фоне предметного стекла.

После специального окрашивания область ядерной вакуоли бактерии становится отчетливо видна.

Молекула ДНК (нуклеоид) состоит из 1,6 х 107 нуклеотидных пар. Нуклеотид – это отдельный «кирпичик», звено, из которого состоят все ядерные нуклеиновые кислоты (ДНК, РНК). Таким образом, нуклеотид только отдельная малая часть нуклеоида. Длина молекулы ДНК в развернутом состоянии может быть в тысячу раз больше, чем длина самой бактериальной клетки.

Некоторые бактериальные клетки содержат дополнительные хранилища наследственной информации – плазмиды. Это внехромосомные генетические элементы, состоящие из двухцепочечных ДНК.

Они намного меньше нуклеоида и содержат «всего» 1500–40 000 пар нуклеотидов. В таких плазмидах может находиться до сотни генов.

Их существование может быть полностью автономным, хотя в определенных условиях дополнительные гены легко встраиваются в основную цепочку ДНК.

Каркас для одноклеточных

Клеточная стенка выполняет формообразующую функцию, т. е. одновременно работает «скелетом» для клетки и заменяет ей кожу. Эта жесткая наружная оболочка:

  • защищает бактериальные «внутренности»;
  • отвечает за форму бактерий;
  • транспортирует питательные вещества внутрь и выводит отходы наружу.

Встречаются бактериальные клетки округлой (кокки), извилистой (вибрионы, спириллы), палочкообразной формы. Есть микроорганизмы похожие на колбочки, звездочки, кубики или имеющие С-образный вид.

Механические и физиологические функции (защита и транспорт) бактериальной клеточной стенки зависят от ее строения. Изучать строение клеточной стенки удобно с помощью метода Грама. Этот датчанин предложил способ окраски бактерий анилиновыми красителями. В зависимости от реакции клеточной оболочки на краску различают:

  1. Грамположительные (поддающиеся окраске) бактерии. Их оболочка состоит из одного слоя, внешняя мембрана отсутствует.
  2. Грамотрицательные бактерии имеют оболочку, не удерживающую краситель (после промывки стенка обесцвечивается). Их наружная оболочка намного тоньше, чем у грамположительных, при этом она имеет два слоя – наружную мембрану и располагающуюся под ней бактериальную стенку.

Такое разделение бактерий имеет большое значение в медицинских исследованиях – чаще всего патогенные микробы имеют грамположительную стенку. Если анализ выявил грамположительные бактерии, то есть повод для переживаний.

Грамотрицательные клетки намного безопасней. Некоторые из них постоянно присутствуют в организме и могут представлять угрозу только в случае неконтролируемого размножения. Это так называемые условно-патогенные бактерии.

Внешняя мембрана грамотрицательных бактерий расширяет функции бактериальной стенки. Меняется ее проницаемость и транспортные свойства.

Внешняя мембрана имеет различные каналы (поры), избирательно пропускающие вещества внутрь клетки – полезные проходят свободно, а токсины отторгаются. То есть наружный слой грамотрицательной клетки выполняет функцию «решета» для молекул.

Этим можно объяснить большую устойчивость грамотрицательных организмов к неблагоприятным условиям: всевозможным ядам, химическим веществам, ферментам, антибиотикам.

В биологии «слоенный пирог» из клеточной стенки и цитоплазматической мембраны называют клеточной оболочкой.

Что такое ЦПМ и мезосомы

Между клеточной стенкой и цитоплазмой расположен еще один органоид – цитоплазматическая мембрана (ЦПМ). В ее функции входит ограничение внутреннего содержимого клетки, поддержание ее формы, защита от проникновения агрессивных факторов и беспрепятственный допуск питательных веществ. По сути, это еще одно молекулярное «сито».

Через цитоплазматическую мембрану свободно проходят электроны (энергия) и транспорт материалов, необходимых для существования клетки. Различают два активных процесса, протекающих через мембрану:

  • эндоцитоз – проникновение веществ внутрь бактерии;
  • экзоцитоз – выведение отходов.

В процессе эндоцитоза мембрана образует внутренние складки, которые затем трансформируются в пузырьки (вакуоли). В зависимости от выполняемых функций различают два вида эндоцитоза:

  1. Фагоцитоз («поедание»). Эта функция доступна некоторым видам бактерий, их называют фагоцитами. Такие клетки создают из цитоплазматической мембраны своеобразный мешок, обволакивающий поглощаемую частицу (фагоцитозную вакуоль). Примером могут служить лейкоциты крови, «съедающие» чужеродные частицы или бактерии.
  2. Пиноцитоз («выпивание») – это поглощение жидкостей. При этом образуются пузырьки различного размера, иногда очень мелкие.

Экзоцитоз (выведение) действует в противоположном направлении. С его помощью из клетки выводятся непереваренные остатки и клеточный секрет.

Помимо этого, цитоплазматическая мембрана:

  • регулирует давление жидкости внутри клетки;
  • принимает и обрабатывает химическую информацию извне;
  • участвует в процессе деления клетки;
  • отвечает за отращивание жгутиков и их движение;
  • регулирует синтез клеточной стенки.

Внутренняя бактериальная мембрана в зависимости от выполняемых клеткой функций образует мезосомы (внутренние складки). Примером могут служить ламеллы и тилакоиды в одноклеточных, живущих за счет фотосинтеза.

Тилакоиды представляют собой стопки плоских мешочков, образованных внутренними складками мембраны (мезосомами), в которых протекает фотосинтез, а ламеллы – это те же вытянутые в длину мезосомы, соединяющие между собой стопки тилакоидов.

У грамположительных бактерий мезосомы хорошо развиты и довольно сложно организованы, в отличие от грамположительных. Различают три вида мезосом:

  • пластинчатые (ламеллы);
  • пузырьки (везикулы с запасом питательных веществ);
  • трубочки (тубулярные мезосомы).

Микробиологи пока не пришли к окончательному выводу – являются ли мезосомы основной структурой бактериальной клетки или только усиливают выполняемые ею функции.

Рибосомы – основа белковой жизни

Цитоплазма бактерий – внутренняя полужидкая (коллоидная) составляющая клетки, в которой находятся все органоиды (нуклеоид, плазмиды, мезосомы и прочие включения). Одна из основных функций цитоплазмы – создавать комфортные условия для рибосом.

Рибосома – важнейший немембранный органоид клетки, состоящий из двух частей: большой и малой субъединиц (полипептидов, составляющих белковый комплекс). Функция рибосом – синтез белка в клетке.

Рибосомы – это рибонуклеопротеиновые частицы размером примерно до 20 нм. В клетке их может одновременно быть от 5 000 до 90 000. Это самые маленькие и самые многочисленные органоиды прокариот.

Большая часть бактериальной РНК расположена именно в рибосомах, кроме того, в их состав входят белки.

Рибосомы отвечают за синтез белков из аминокислот. Процесс протекает по схеме, заложенной в генетической информации РНК. Считается, что эволюция рибосом началась в добелковую эру.

Со временем аппарат биосинтеза совершенствовался, но основную функцию в нем продолжает играть РНК.

Таким образом, рибосомы – поставщики основного компонента жизнедеятельности белковых форм – сами опираются на РНК, а не на белковую составляющую.

Проблема зарождения жизни на Земле представляет своеобразный парадокс – ДНК (дезоксирибонуклеиновая кислота), несущая генетическую информацию, не может сама себя размножить, ей нужен некий катализатор, а белки, отличный катализатор, не могут образоваться без ДНК. Возникает парадокс: курицы и яйца или «что было раньше?».

Оказалось, в начале была РНК (рибонуклеиновая кислота)! Все ключевые стадии биосинтеза белка (передачу информации, работу катализатора, транспорт аминокислот) взяла на себя РНК, составляющая основу рибосом.

Это послужило одним из доказательств существования жизни «до ДНК».

Гипотеза о «мире РНК» пока не нашла экспериментального подтверждения, но исследования нуклеиновых кислот остаются одним из самых «горячих» направлений науки.

Дополнительные структуры прокариот

Как любое живое существо, бактериальная клетка стремится обезопасить себя, создавая различные дополнительные элементы. К поверхностным структурам относятся:

  1. Капсула. Это поверхностный слизистый слой, образующийся вокруг клетки как реакция на окружающую среду. Капсула не только дает бактерии дополнительную защиту, но и может содержать запас питательных веществ «на черный день».
  2. Жгутики. Длинные (длиннее самой клетки) очень тонкие нити, прикрепленные к ЦПМ и стенке, работают моторчиком для свободного перемещения бактерий. Могут располагаться по всей поверхности бактерии или расти пучками по ее краям.
  3. Пили (ворсинки). Они отличаются от жгутиков размерами (тоньше и намного короче). В функции пилей не входит перемещение, но они отвечают за крепление (привязку) бактерий к другим микроорганизмам или поверхностям. Еще пили участвуют в водно-солевом обмене и питательном процессе.
  4. Споры. Это гарантия для микроорганизмов пережить любые неблагоприятные факторы (отсутствие воды или пищи, агрессивная среда). Они образуются внутри бактерий, в основном грамположительных. Однако этот способ обеспечивает только выживание, но не размножение (как в случае грибных спор).

Внутренние дополнительные включения могут быть как активными (хлоросомы фотосинтезирующих клеток), так и пассивными (запасы питания). У бактерий, живущих в воде, есть газовые вакуоли, крохотные пузырьки воздуха, отвечающие за их плавучесть.

Питательные вещества бактерий откладываются в различных гранулах (липиды, волютин). Липиды обеспечивают бактерию запасом углерода, дающим энергию в отсутствии других источников. Волютин (зерна, содержащие полифосфаты), становится источником фосфора, когда в окружающей среде его недостаточно. Запасы волютина тоже могут служить источником энергии, хотя их роль не так значительна.

Дополнительными структурами цианобактерий являются запасы азота, для серобактерий – отложения молекулярной серы. Основная характеристика всех включений с запасами «на черный день» – они обязательно изолированы от цитоплазмы и не могут оказывать на клетку воздействие в нормальных условиях. В противном случае может быть передозировка химических элементов и бактерия пострадает.

Структуры бактериальной клетки, как основные, так и дополнительные, четко выполняют свои функции, сохраняя и продлевая ее жизнеспособность. Информация, содержащаяся в РНК и ДНК прокариот, позволяет клетке быстро реагировать на изменение условий существования и принимать необходимые меры для сохранения микроорганизма и успешного выполнения всех функций, заложенных в него природой.

Образование высшее филологическое. В копирайтинге с 2012 г., также занимаюсь редактированием/размещением статей. Увлечения — психология и кулинария.

Источник: https://probakterii.ru/prokaryotes/organelles/funkcii-bakterialnoj-kletki.html

Органоиды клетки, подготовка к егэ по биологии

Какие органоиды есть у бактерий

Органоиды движения – это выросты мембраны, которые в диаметре достигают 0,25 мкм. По своему строению жгутики намного длиннее ресничек.

Длина жгутика сперматозоида у некоторых млекопитающих может достигать 100 мкм, в то время как размер ресничек составляет до 15 мкм.

Несмотря на такие различия, внутреннее строение данных органоидов абсолютно одинаковое. Образуются они из микротрубочек, которые по своему строению схожи с центриолями клеточного центра.

Двигательные движения образуются за счёт скольжения микротрубочек между собой, в результате чего они изгибаются. У основания данных органоидов находится базальное тельце, которое крепит их к клеточной цитоплазме. Чтобы обеспечить работу органоидов движения, клетка расходует энергию АТФ.

Рис. 2. Строение жгутика.

Некоторые клетки (амёбы, лейкоциты) передвигаются за счёт псевдоподий, другими словами – ложноножек. Однако, в отличие от жгутиков и ресничек, псевдоподии – это временные образования. Они могут исчезать и появляться в разных местах цитоплазмы. К их функциям относится передвижение, а также захват пищи и других частиц.

Жгутики состоят из нити, крюка и базального тельца. По числу и расположению этих органоидов на поверхности бактерий они распределяются на:

  • Монотрихи (один жгутик);
  • Амфитрихи (по одному жгутику на разных полюсах);
  • Лофотрихи (пучок образований на одном или обоих полюсах);
  • Перитрихи (множество жгутиков, расположенных по всей поверхности клетки).

Рис. 3. Разновидности жгутиконосцев.

Среди выполняемых функций органоидов движения можно выделить:

  • обеспечение движением одноклеточного организма;
  • возможность мышц сокращаться;
  • защитная реакция дыхательных путей от инородных частиц;
  • продвижение жидкости.

Жгутиконосцы играют большую роль в круговороте веществ в окружающей среде, многие из них являются хорошими индикаторами загрязнённости водоёмов.

Что мы узнали?

Одними из составляющих элементов клетки являются органоиды движения. К ним относятся жгутики и реснички, которые образованы с помощью микротрубочек. В их функции входит обеспечить движение одноклеточному организму, продвижение жидкостей внутри многоклеточного организма.

Строение бактериальной клетки

Размеры — от 1 до 15 мкм. Основные формы: 1) кокки (шаровидные), 2) бациллы (палочковидные), 3) вибрионы (изогнутые в виде запятой), 4) спириллы и спирохеты (спирально закрученные).

Формы бактерий: 1 — кокки; 2 — бациллы; 3 — вибрионы; 4—7 — спириллы и спирохеты.

Строение бактериальной клетки: 1 — цитоплазматическая мемб­рана; 2 — клеточ­ная стенка; 3 — слизис­тая кап­сула; 4 — цито­плазма; 5 — хромо­сомная ДНК; 6 — рибосомы; 7 — мезо­сома; 8 — фото­синтети­ческие мемб­раны; 9 — вклю­чения; 10 — жгу­тики; 11 — пили.

Бактериальная клетка ограничена оболочкой.

Внутренний слой оболочки представлен цитоплазматической мембраной (1), над которой находится клеточная стенка (2); над клеточной стенкой у многих бактерий — слизистая капсула (3). Строение и функции цитоплазматической мембраны эукариотической и прокариотической клеток не отличаются.

Мембрана может образовывать складки, называемые мезосомами (7). Они могут иметь разную форму (мешковидные, трубчатые, пластинчатые и др.).

На поверхности мезосом располагаются ферменты. Клеточная стенка толстая, плотная, жесткая, состоит из муреина (главный компонент) и других органических веществ.

Муреин представляет собой правильную сеть из параллельных полисахаридных цепей, сшитых друг с другом короткими белковыми цепочками.

В зависимости от особенностей строения клеточной стенки бактерии подразделяются на грамположительные (окрашиваются по Граму) и грамотрицательные (не окрашиваются). У грамотрицательных бактерий стенка тоньше, устроена сложнее и над муреиновым слоем снаружи имеется слой липидов. Внутреннее пространство заполнено цитоплазмой (4).

Генетический материал представлен кольцевыми молекулами ДНК. Эти ДНК можно условно разделить на «хромосомные» и плазмидные.

«Хромосомная» ДНК (5) — одна, прикреплена к мембране, содержит несколько тысяч генов, в отличие от хромосомных ДНК эукариот она не линейная, не связана с белками.

Зона, в которой расположена эта ДНК, называется нуклеоидом. Плазмиды — внехромосомные генетические элементы.

Представляют собой небольшие кольцевые ДНК, не связаны с белками, не прикреплены к мембране, содержат небольшое число генов.

Количество плазмид может быть различным.

Особенности строения бактериальной клетки. Основные органеллы и их функции

Перед началом синтеза белка происходит объединение этих субъединиц в одну – 70 S. В отличие от клеток эукариотов рибосомы бактерий не объединены в эндоплазматическую сеть.

Мезосомы являются производными цитоплазматической мембраны. Мезосомы могут быть в виде концентрических мембран, пузырьков, трубочек, в форме петли. Мезосомы связаны с нуклеоидом. Они участвуют в делении клетки и спорообразовании.

Включения являются продуктами метаболизма микроорганизмов, которые располагаются в их цитоплазме и используются в качестве запасных питательных веществ.

К ним относятся включения гликогена, крахмала, серы, полифосфата (волютина) и др.

К поверхностным структурам бактериальной клетки относятся также ворсинки (фимбрии, пили) ( рис. 4 , 6). Их насчитывается от нескольких единиц до нескольких тысяч на клетку. Эти структуры не имеют отношения к движению бактерий и обнаружены у

подвижных и неподвижных форм.

Ворсинки построены из одного вида белка – пилина – и представляют собой прямые белковые цилиндры, отходящие от поверхности клетки. Они, как правило, тоньше жгутиков (диаметр – 5-10 нм, длина 0,2-2,0 мкм), расположены перитрихиально или полярно. Больше всего сведений имеется

о ворсинках Е. coli . У этой бактерии описаны ворсинки общего типа и половые.

Ворсинки общего типа придают бактериям свойство гидрофобности, обеспечивают их прикрепление к клеткам растений, грибов и неорганическим частицам, принимают участие в транспорте метаболитов. Через ворсинки в

клетку могут проникать вирусы .

Наиболее хорошо изучены половые ворсинки, или F-пили, принимающие участие
в половом процессе бактерий.

F-пили необходимы клетке-донору для обеспечения контакта между ней и реципиентом и в качестве конъюгационного тоннеля, по которому происходит передача ДНК. Ворсинки нельзя считать обязательной клеточной структурой, так как и без них бактерии хорошо растут

и размножаются.

Фимбрии (пили) – нитевидные белковые органеллы, покрывающих всю поверхность бактериальной клетки – антигены фактора колонизации . Эти тонкие структуры позволяют бактерии прикрепляться к эпителиальным клеткам и

препятствуют ее захвату нейтрофилами

Фимбрии состоят из множества
одинаковых белковых субъединиц.

Обратите внимание

Эта субъединица называется пилином (молекулярная масса 17000-30000). В составе пилина есть консервативные и вариабельные участки. Перестройки хромосом, ведущие к экспрессии любого из множества неактивных генов пилина, сопровождаются

изменениями антигенного состава фимбрий.

При электронной микроскопии фимбрии выглядят как похожие на волоски выросты, проникающие через наружную мембрану. Они могут располагаться на одном конце клетки либо более равномерно по всей ее поверхности. У отдельной клетки может быть несколько

сотен фимбрий, которые выполняют различные функции.

У некоторых фимбрий (например, у дигалактозидсвязывающих фимбрий Escherichia coli ) на апикальном конце находятся специальные белки, играющие важную роль во взаимодействии с

рецепторами клеток.

Считается, что главная функция фимбрий – обеспечение фиксации бактерий в тканях. Адгезия микробная: специфичность тканевая и видоваяАдгезия микробная:

специфичность тканевая и видовая

Химический состав, организация и функции поверхностных структур бактериальной клетки: капсулы, чехлы, фимбрии, пили

Поверхностные структуры –структуры, расположенные снаружи цитоплазматической мембраны. К ним относятся: клеточная стенка, жгутики, капсулы, слизистые слои, чехлы, различные ворсинки.

Многие микроорганизмы продуцируют на поверхности клетки слизистое вещество. В зависимости от толщины слизистого слоя принято различать микрокапсулу,макрокапсулу, слизь.

Микрокапсулатолщиной до 0,2 мкм, прочно связана с клеточной стенкой. Макрокапсулапредставлена слоем слизи толщиной более 0,2 мкм.

Слизьвещество, которое окружает клетку, имеет аморфный вид, легко отделяется от поверхности клетки, по толщине превосходит диаметр клетки.

Все они не являются обязательными структурами бактериальной клетки.

Химическая природа капсул и слизи: полисахариды, полипептиды, реже – целлюлоза.

Капсулы и слизи выполняют следующие функции: защитную – предохраняют клетку от действия неблагоприятных факторов внешней среды; создают дополнительный осмотический барьер; способны выступать в качестве фактора вирулентности; служат барьером для бактериофагов; являются источником запасных питательных веществ; объединяют клетки в цепочки, колонии; обеспечивают прикрепление клеток к субстрату.

Чехлы имеют сложную тонкую структуру; в их составе выявляют несколько слоев разного строения, имеют сложный химический состав.

Между капсулами, чехлами и слизистыми слоями обнаружено много переходных форм, что не позволяет точно отличить их друг от друга.

Ворсинки, или фимбрии, – поверхностные структуры, которые состоят из белка пилина и не выполняют функцию движения. По размерам они короче и тоньше жгутиков. Число фимбрий на поверхности клетки колеблется от 1–2 до нескольких тысяч. Различают два типа фимбрий: общие и специфические.

Фимбрии общего типавыполняют функцию прикрепления клетки к поверхности субстрата. Специфические ворсинки – половые пили, обнаруженные у клеток так называемых доноров. Они имеют вид полых белковых трубочек длиной от 0,5 до 10 мкм.

· Поверхностные структуры –это структуры, расположенные снаружи цитоплазматической мембраны. К ним относятся: клеточная стенка, жгутики, капсулы, слизистые слои, чехлы, различные ворсинки.

· Химическая природа капсул и слизи:

– В большинстве случаев капсула образована полисахаридами (например, у бактерий вида Streptococcusmutans, некоторых бактерий родов Xanthomonas, Klebsiella, Corynebacteriumи др.).

– Капсулы же других видов бактерий состоят из полипептидов, представленных полимерами, в которых содержится много D- и L-форм глутаминовой кислоты. Примером такой капсулы является капсула бактерий Bacillusanthracis.

– Для ряда бактерий выявлена способность синтезировать капсулу, состоящую из волокон целлюлозы. Так построена капсула у бактерий Sarcinaventriculi.

– Слизи по химической природе являются полисахаридами. Особенно обильное их образование наблюдается у многих микроорганизмов при их росте на среде с сахарозой. Например, молочнокислые бактерии Leuconostocmesenteroidesбыстро превращают раствор, содержащий тростниковый сахар, в декстрановый гель, за что их на сахарных заводах называют «бактериями лягушачьей икры».

Рис. 1 – Капсулы пурпурной серобактерии (А) и азотфиксирующей бактерии (Б); клетки суспензированы в туши

· Практическое значение капсул и слизей: Капсульные полисахариды, образуемые бактериями, имеют большое практическое значение.

Так, ксантан, внеклеточный полисахарид бактерий Xanthomonascampestris, используется в составе смазок, при добыче нефти, в пищевой промышленности для улучшения вкусовых свойств консервированных и замороженных продуктов, соусов, кремов, а также в изготовлении косметики.

· Чехлы обычно имеют и более сложный химический состав. Например, чехол бактерий Sphaerotilisnatansсодержит 36 % углеводов, 11 – гексозамина, 27 – белков, 5,2 – липидов и 0,5 – фосфора. Чехлы ряда бактерий, метаболизм которых связан с окислением восстановленных соединений металлов, часто инкрустированы их окислами.

Источник: https://blotos.ru/dvizenie-bakterij-zgutiki-fimbrii-pili-i-drugie-organoidy

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: