Какие нуклеотиды образуют комплементарные связи

Что собой представляет нуклеотид: вид, строение и длина одного нуклеотида

Какие нуклеотиды образуют комплементарные связи

Все живое на планете состоит из многочисленных клеток. Они поддерживают упорядоченность своей организации с помощью генетической информации, содержащейся в ядре, которая сохраняется, передается и реализуется высокомолекулярными сложными соединениями — нуклеиновыми кислотами. Кислоты эти, в свою очередь, состоят из мономерных звеньев – нуклеотидов.

  • Понятие нуклеотида
  • Состав и основные свойства нуклеотидов
  • Нуклеиновые кислоты
  • Состав азотистых оснований
  • Образование фосфодиэфирных связей
  • Структура ДНК
  • Функции и свойства ДНК
  • Молекула РНК – структура
  • Роль нуклеотида в организме

Роль нуклеиновых кислот переоценить невозможно. Нормальная жизнедеятельность организма определяется стабильностью их структуры. Если в строении происходят любые отклонения , меняется количество либо последовательность — это обязательно приводит к изменениям в клеточной организации. Изменяется активность физиологических процессов и жизнедеятельность клеток.

: водородная связь образуется между молекулами, химический механизм.

Понятие нуклеотида

Как и белки, нуклеиновые кислоты необходимы для жизни. Это генетический материал всех живых организмов, включая вирусы.

Выяснение структуры одного из двух типов нуклеиновых кислот ДНК позволило понять, каким образом в живых организмах хранится информация, необходимая для регулирования жизнедеятельности и как она передается потомству. Нуклеотид представляет собой мономерную единицу, образующую соединения более сложные — нуклеиновые кислоты.

Без них невозможно хранение, воспроизведение и передача генетической информации. Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.Из них строятся длинные молекулы — полинуклеотиды.

Чтобы разобраться со структурой полинуклеотида следует понять строение нуклеотидов.

: типы кристаллических решёток, таблица.

Что такое нуклеотид? Молекулы ДНК собраны из мелких мономерных соединений. Другими словами, нуклеотид — это органическое сложное соединение, представляющее собой составную часть нуклеиновых кислот и других биологических соединений, необходимых для жизнедеятельности клетки.

Состав и основные свойства нуклеотидов

В состав молекулы нуклеотида (мононуклеотида) в определенной последовательности входят три химических соединения:

  1. Пентоза или пятиугольный сахар:
  • дезоксирибоза. Эти нуклеотиды называют дезоксирибонуклеотидами. Они входят в состав ДНК;
  • рибоза. Нуклеотиды входят в состав РНК и называются рибонуклеотидами.

2. Азотистая пиримидиновая или пуриновая основа, связанная с углеродным атомом сахара. Это соединение называют нуклеозидом

3. Фосфатная группа, состоящая из остатков фосфорной кислоты ( в количестве от одного до трех). Присоединяется к углероду сахара эфирными связями, образующими молекулу нуклеотида .

Свойствами нуклеотидов являются:

  • участие в метаболизме и других физиологических процессах, которые протекают в клетке;
  • осуществление контроля над репродукцией и ростом;
  • хранение информации о наследуемых признаках и о структуре белка.

Нуклеиновые кислоты

Сахар в нуклеиновых кислотах представлен пентозой. В РНК пятиуглеродный сахар называется рибозой, в ДНК — дезоксирибозой. В каждой молекуле пентозы пять атомов углерода, из которых четыре образуют кольцо с атомом кислорода , а пятый атом входит в группу НО-СН2.

В молекуле положение атома углерода обозначается цифрой со штрихом (например:1C´, 3C´, 5C´). Так как у вех процессов считывания с молекулы нуклеиновой кислоты наследственной информации имеется строгая направленность, нумерация углеродных атомов и их расположение служат указателем верного направления.

С первым углеродным атомом 1C´ в молекуле сахара соединяется азотистое основание.

К третьему и пятому углеродным атомам по гидроксильной группе (3C´, 5C´) присоединяется остаток фосфорной кислоты, который определяет химическую принадлежность к группе кислот ДНК и РНК.

Состав азотистых оснований

Виды нуклеотидов по азотистому основанию ДНК :

Первые два класса — пурины:

Два последние относятся к классу пиримидинов:

Пуриновые соединения по молекулярной массе тяжелее пиримидиновых.

Нуклеотиды РНК по азотистому соединению представлены:

  • гуанином;
  • аденином;
  • урацитолом;
  • цитозином.

Так же, как тимин, урацил является пиримидиновым основанием. Нередко в научной литературе азотистые основания обозначаются латинскими буквами (A, T, C, G, U).

Пиримидины, а именно тимин, цитозин, урацил представлены шестичленным кольцом, состоящим из двух атомов азота и четырех атомов углерода, последовательно пронумерованных , от 1 до 6.

Пурины (гуанин и аднин) состоят из имидазола и пиримидина. В молекулах пуриновых оснований четыре атома азота и пять атомов углерода. У каждого атома имеется свой номер от 1 дот 9.

Результатом соединений азотистых остатков с остатками пентозы является нуклеозид. Нуклеотид – это соединение фосфатной группы с нуклеозидом.

Образование фосфодиэфирных связей

Следует разобраться в вопросе о том, как нуклеотиды соединяются в полипептидную цепь, сколько их участвует в процессе ,образуя молекулу нуклеиновой кислоты за счет фосфодиэфирных связей.

При взаимодействии двух нуклеотидов образуется динуклеотид. Новое соединение образуется путем конденсации, когда возникает фосфодиэфирная связь между гидроксигруппой пентозы одного мономера и фосфатным остатком другого.

Синтезом полинуклеотида является многочисленное повторение этой реакции. Сборка полинуклеотидов представляет сложный процесс, обеспечивающей рост цепи с одного конца.

Структура ДНК

Молекулы ДНК, как и молекулы белка, имеют первичную, вторичную структуры и третичную. Первичную структуру в цепи ДНК определяет последовательность нуклеотидов. В основе вторичной структуры лежит формирование водородных связей.

При синтезе двойной спирали ДНК имеется определенная закономерность и последовательность: тимин одной цепи соответствует аденину другой; цитозин – гуанину, и наоборот.

Соединения нуклеидов создают прочную связь цепей, с равным между ними расстоянием.

Зная последовательность нуклеотидов одной цепи ДНК можно по принципу дополнения или комплементарности достроить вторую.

Третичная структура ДНК образовывается путем трехмерных сложных соединений. Это делает молекулу более компактной, чтобы она могла свободно разместиться в небольшом объеме клетки. длина кишечной палочки ДНК более 1 мм, в то время как длина самой клетки менее 5 мкм.

Количество пиримидиновых оснований равняется всегда числу пуриновых. Расстояние между нуклеотидами равняется 0,34 нм. Это постоянная величина, как и молекулярная масса.

Функции и свойства ДНК

Основные функции ДНК:

  • сохраняет наследственную информацию;
  • передача (удвоение/репликация);
  • транскрипция, реализация;
  • ауторепродукция ДНК. Функционирование репликона.

Процесс самовоспроизведения молекулы нуклеиновой кислоты сопровождается передачей от клетки к клетке копий генетической информаций. Для его осуществления необходимы набор специфических ферментов. В этом процессе полуконсервативного типа образуется репликативная вилка.

Репликон представляет собой единицу репликационного процесса участка генома, подконтрольного одной точке инициации репликации. Как правило, геном прокариот -это репликон. Репликация от точки инициации идет в обе стороны, иногда с различной скоростью.

Молекула РНК – структура

РНК является одной полинуклеотидной цепочкой, которая образуется через ковалентные связи между фосфатным остатком и пентозой . Она короче ДНК, имеет другую последовательность и различается по видовому составу азотистых соединений. Пиримидиновое основание тимина в РНК заменяется урацилом.

РНК может быть трех видов, в зависимости от тех функций, которые выполняются в организме:

  • информационная (иРНК) — очень разнообразная по нуклеотидному составу. Она является своего рода матрицей для синтеза белковой молекулы, переносит генетическую информацию к рибосомам от ДНК;
  • транспортная (тРНК) в среднем состоит из 75-95 нуклеотидов. Она переносит необходимую аминокислоту в рибосоме к месту синтеза полипептида. У каждого вида тРНК и есть своя, присущая только ему последовательность нуклеотидов или мономеров;
  • рибосомальная (рРНК) обычно одержит от 3000 до 5000 нуклеотидов. Рибосом является необходимым структурным ом компонент участвующим в важнейшем процессе, происходящем в клетке – биосинтезе белка.

Роль нуклеотида в организме

В клетке нуклеотиды выполняют важные функции:

  • являются биорегуляторами;
  • используются как структурные блоки для нуклеиновых кислот ;
  • входят в состав главного источника энергии в клетке — АТФ;
  • участвуют во многочисленных обменных процессах в клетках;
  • являются переносчиками восстановительных эквивалентов в клетках (ФАД, НАДФ+; НАД+; ФМН);
  • могут рассматриваться как вестники регулярного внеклеточного синтеза (цГМФ, цАМФ).

Свободные нуклеотиды – главные компоненты, которые участвуют в энергетических и в сигнальных процессах. Они поддерживают нормальную жизнедеятельность отдельных клеток и организма в целом.

Источник: https://obrazovanie.guru/himiya/nukleotid-stroenie-massa-dlina-posledovatelnost.html

Днк (дезоксирибонуклеиновая кислота)

Какие нуклеотиды образуют комплементарные связи

ДНК (дезоксирибонуклеиновая кислота) — это линейный органический полимер, мономерными звеньями которого являются нуклиатиды.

Вся информация о строении и функционировании любого живого организма содержится в закодированном виде в его генетическом материале. Основу генетического материала организма составляет дезоксирибонуклеиновая кислота (ДНК).

ДНК большинства организмов – это длинная двухцепочечная полимерная молекула.

 Последовательность мономерных звеньев (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой.

Принцип комплементарности обеспечивает синтез новых молекул ДНК, идентичных исходным, при их удвоении (репликации).

Участок молекулы ДНК, кодирующий определенный признак, – ген.

Гены – это индивидуальные генетические элементы, имеющие строго специфичную нуклеотидную последовательность, и кодирующие определенные признаки организма. Одни из них кодируют белки,  другие — только молекулы РНК.

Информация, которая содержится в генах, кодирующих белки (структурных генах), расшифровывается в ходе двух последовательных процессов:

  • синтеза РНК (транскрипции): на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК).
  • синтеза белка (трансляции): В ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы.

Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы определяет ее структуру и функции.

Строение ДНК

ДНК – это линейный органический полимер. Его мономерные звенья – нуклеотиды, которые, в свою очередь, состоят из:

  • азотистого основания;
  • пятиуглеродного сахара (пентозы);
  • фосфатной группы (рисунок 1).Рисунок 1 : ДНК – строение одной цепочки нуклеотидов

При этом,  фосфатная группа присоединена к 5′-атому углерода моносахаридного остатка,  а  органическое основание — к 1′-атому.

Основания в ДНК бывают двух типов:

  • Пуриновые: аденин ( А ) и гуанин (G);
  • Пиримидиновые: цитозин (С) и тимин (Т);(рисунок 2),Рисунок 2: Азотистые основания- пуриновые и пиримидиновые

Строение нуклеотидов в молекуле ДНК

В ДНК моносахарид представлен  2′-дезоксирибозой, содержащей только 1 гидроксильную группу (ОН),  а  в РНКрибозой, имеющей 2 гидроксильные группы(OH).

Нуклеотиды соединены друг с другом фосфодиэфирными связями, при этом фосфатная группа 5′-углеродного атома одного нуклеотида связана с З’-ОН-группой дезоксирибозы соседнего нуклеотида (рисунок 1). На одном конце полинуклеотидной цепи находится З’-ОН-группа (З’-конец),  а  на другом — 5′-фосфатная группа (5′-конец).

Уровни структуры ДНК

Принято выделять 3 уровня структуры ДНК:

  • первичную;
  • вторичную;
  • третичную.

Первичная структура  ДНК – это последовательность расположения нуклеотидов в полинуклеотидной цепи ДНК.

Вторичная структура ДНК стабилизируется  водородными связями между комплементарными парами оснований и представляет собой двойную спираль из двух антипараллелных цепочек,  закрученных вправо вокруг одной оси.

Общий виток спирали- 3,4нм, расстояние между цепочками 2нм.

Третичная структура ДНК – суперсперализация ДНК.

Двойная спираль ДНК на некоторых участках может подвергаться дальнейшей спирализации с образованием суперспирали или открытой кольцевой формы, что часто вызвано ковалентным соединением их открытых концов.

Суперспиральная структура ДНК обеспечивает экономную упаковку очень длинной молекулы ДНК в хромосоме. Так, в вытянутой форме длина молекулы ДНК составляет  8 см,  а в форме суперспирали укладывается в 5 нм.

 Правило Чаргаффа

Правило Э. Чаргаффа – это закономерность количественного содержания азотистых оснований в молекуле ДНК:

  1. У ДНК молярные доли пуриновых и пиримидиновых оснований равны: А+ G = C + Т  или (А + G)/(C + Т)=1.
  2. В ДНК количество оснований с аминогруппами (А +C) равно количеству оснований с кетогруппами (G + Т):   А +C= G + Т или (А +C)/(G + Т)= 1
  3. Правило эквивалентности, то есть : А=Т, Г=Ц; А/Т = 1;  Г/Ц=1.
  4. Нуклеотидный состав ДНК у организмов различных групп специфичен и характеризуется коэффициентом специфичности: (Г+Ц)/(А+Т). У высших растений и животных коэффициент специфичности меньше 1, и колеблется незначительно: от 0,54 до 0,98, у микроорганизмов он больше 1.

Модель ДНК Уотсона-Крика

Б 1953 г. Джеймс Уотсон и Фрэнсис Крик, основываясь на данных рентгеноструктурного анализа кристаллов ДНК, пришли к выводу, что нативная ДНК состоит из двух полимерных цепей, образующих двойную спираль (рисунок 3).

Навитые одна на другую полинуклеотидные цепи удерживаются вместе водородными связями, образующимися между комплементарными основаниями противоположных цепей (рисунок 3).

При этом аденин образует пару только с тимином,  а  гуанин — с цитозином.

Пара оснований  А—Т  стабилизируется двумя водородными связями,  а  пара G—Стремя.

Длина двухцепочечной ДНК обычно измеряется числом пар комплементарных нуклеотидов (п.н.). Для молекул ДНК, состоящих из тысяч или миллионов пар нуклеотидов, приняты единицы т.п.н. и м.п.н. соответственно. Например, ДНК хромосомы 1 человека представляет собой одну двойную спираль длиной 263 м.п.н.

Сахарофосфатный остов молекулы, который состоит из фосфатных групп и дезоксирибозных остатков, соединенных 5’—З’-фосфодиэфирными связями, образует «боковины винтовой лестницы»,  а  пары оснований  А—Т  и G—С — ее ступеньки (рисунок 3).

Рисунок 3: Модель ДНК Уотсона-Крика

Цепи молекулы ДНК антипараллельны: одна из них имеет направление 3’→5′, другая 5’→3′.

В соответствии с принципом комплементарности, если в одной из цепей имеется нуклеотидная последовательность 5-TAGGCAT-3′, то в комплементарной цепи в этом месте должна находиться последовательность 3′-ATCCGTA-5′. В этом случае двухцепочечная форма будет выглядеть следующим образом:

  • 5′-TAGGCAT-3′
  • 3-ATCCGTA-5′.

В такой записи 5′-конец верхней цепи всегда располагают слева,  а  3′-конец — справа.

Носитель генетической информации должен удовлетворять двум основным требованиям: воспроизводиться (реплицироваться) с высокой точностью и детерминировать (кодировать) синтез белковых молекул.

Модель ДНК Уотсона—Крика полностью отвечает этим требованиям, так как:

  • согласно принципу комплементарности каждая цепь ДНК может служить матрицей для образования новой комплементарной цепи. Следовательно, после одного раунда репликации образуются две дочерние молекулы, каждая из которых имеет такую же нуклеотидную последовательность, как исходная молекула ДНК.
  • нуклеотидная последовательность структурного гена однозначно задает аминокислотную последовательность кодируемого ею белка.

Интересные факты о ДНК

  1. Одна молекула ДНК человека вмещает порядка 1,5 гигабайта информации. При этом, ДНК всех клеток человеческого организма занимают 60 млрд. терабайт, что сохраняются на 150-160 граммах ДНК. [2]
  2. Международный день ДНК отмечается 25 апреля.

    Именно в этот день в 1953 году Джеймс Уотсон и Фрэнсис Крик опубликовали в журнале Nature свою статью под названием «Молекулярная структура нуклеиновых кислот», где описали двойную спираль молекулы ДНК. [3]

Список литературы: Молекулярная биотехнология: принципы и применение, Б.

Глик, Дж. Пастернак, 2002 год
Б.Глик,
Дж. Пастернак,
Источник: Молекулярная биотехнология: принципы и применение, Б.Глик, Дж. Пастернак, 2002 год
[2] MPlast.

by – портал: “ДНК 1 клетки человека вмещает 1,5 гигабайта информации – лучший винчестер на планете” – 27 апреля 2016 года
[3] Журнал NATURE: “Molecular Structure of Nucleic Acids” – 25 апреля 1953 года
Дата в источнике: 2002 год

Источник: https://mplast.by/encyklopedia/dnk-dezoksiribonukleinovaya-kislota/

Молекула ДНК

Какие нуклеотиды образуют комплементарные связи

На сегодняшний день двойная спираль ДНК — один из самых известных и популярных научных символов. Вся информация об организме — абсолютно вся — его предки, внешние и внутренние признаки и даже те заболевания, которые перенес организм, «записаны» в молекуле ДНК.

Но так было не всегда. Еще в 1920 г (это самое начало ХХ века!) ученые стали эксперимнтально доказывать существование этой молекулы.

Но на данный момент заслуги по определению и выделению ДНК относят к двум ученым — Д.Уотсону и Ф.Крику. Запомните эти две фамилии — они часто встречаются в вопросах ЕГЭ.

Строение  ДНК подробно описано в теме Нуклеиновые кислоты. Повторим вот что: какие азотистые основания входят в ее состав — структура днк:

  • Аденин А;
  • Тимин Т;
  • Цитозин Ц;
  • Гуанин Г.

Эти основания входят в состав каждой спирали. А вот друг с другом эти полосочки держатся за счет межмолекулярных, водородных связей, которые возникают строго между определенными участками!

 

 

Принцип комплементарности

Каждое основание на одной из цепей связывается с одним определённым основанием на второй цепи.

Аденин образует связи только с тимином

цитозин — с гуанином.

А—-Т

Ц—- Г

В тестах ЕГЭ часто приходиться иметь дело с таким типом задач:

По принципу комплементарности у нас А связан с Т, Ц — с Г:

1 — я цепь ДНК: ГГГЦАТААЦГЦТ…

1 — я цепь ДНК: ЦЦЦГТАТТГЦГА

Молекула ДНК имеет форму двойной спирали, и ее воспроизведение основано на том, что каждая цепь двойной спирали служит матрицей для сборки новых молекул.

При делении клетки происходит самовоспроизведение ДНК — репликация — каждая дочерняя клетка получает копию материнской ДНК. Это и есть основная функция этой нуклеиновой кислоты — передача наследственной информации.

Репликация ДНК происходит в период интерфазы перед каждым клеточным делением. Материнская молекула ДНК ( количество ДНК в клетке равно 2с) под действием фермента ДНК — полимеразы раскручивается с одного конца, а затем из свободных нуклеотидов по принципу комплементарности на цепях строятся дочерние полинуклеотидные цепи.

В результате матричных реакций возникают две одинаковые по нуклеотидному составу дочерние молекулы ДНК, в которых одна из цепей старая, а другая  — новая.

Количество ДНК в клетке становится равным 4с = 2с + 2с

Репликация ДНК

Этапы процесса репликции:

  1. Сначала молекула ДНК «расшнуровывается» — цепи молекулы расплетаются (разрываются достаточно непрочные водородные связи) специальным ферментом — хеликазой.

     Теперь каждая цепочка будет служить своеобразной матрицей, на которой будет синтезироваться новая линия

  2. Другой фермент — ДНК-полимераза  — «прикрепляет» новые нуклеотиды к матрице по принципу комплементарности — к аденину — тимин, к цитозину — гуанин.

  3. Как только процесс заканчивается, новые дочерние молекулы расходятся и скручиваются в спираль. Каждая «уезжает» в новую дочернюю клетку. 

Скорость репликации молекулы ДНК — 750 нуклеотидов в секунду!

Конечно, в процессе появляются ошибки, но их количество ничтожно мало…

Денатурация характерна не только для белков, но и для молекулы ДНК. Молекула распадается на части и теряет свои свойства.
Причинами денатурации все те же: нагревание, соли тяжелых металлов, кислоты, щелочи, ионизирующее излучение.

 

 

Функции ДНК

Основная функция молекулы ДНК — хранение и передача следующему поколению той наследственной информации, которая в ней записана.

Благодаря принципу комплементарности репликация ДНК создает практически точную копию исходной молекулы. Благодаря этому новые образующиеся клетки идентичны материнским.

Несколько определений, которые очень помогут как при изучении делений клеток, так и при изучении клеточных структур:

Ген — участок молекулы ДНК, определяющий возможность формирования определенного признака или синтез одной белковой молекулы.

Хромосома — комплекс, состоящий из белков и двух спиральных нитей ДНК.

Хроматиды — две сестринские молекулы ДНК.

Обсуждение: “Молекула днк”

(Правила комментирования)

Источник: https://distant-lessons.ru/molekula-dnk.html

Что такое комплементарность ДНК

Какие нуклеотиды образуют комплементарные связи

Под комплементарностью (взаимодополняемостью) понимают такое соответствие молекул биополимеров, которое обеспечивает возникновение между ними водородной связи.

В ДНК такое соответствие обеспечивается формированием парных связей (аденин-тимин и гуанин-цитозин).

Это необходимо для хранения и трансляции всей генетической информации человека, а заодно таких фундаментальных процессов, как репликации, транскрипции во время синтеза белка и возобновления этой кислоты вследствие повреждения ее цепи.

Описание комплементарности

Образование двойной цепи дезоксирибонуклеиновой кислоты (рнк) возможно тогда, когда одно пуриновое основание (аденин, гуанин) связано между собой одним из пиримидиновых оснований (тимином, цитозином.). Это соотношение известно как правило взаимодополняемости.

 
Это правило означает, что две цепи несут одну и ту же генетическую информацию, хотя и различаются между собой химически. Получается, что одна цепь дезоксирибонуклеиновой кислоты задает другую.
Дополняемость нуклеотидов обеспечивает важнейшую функцию нуклеинового соединения – определение синтеза белка.

Вся информация о составе белка кодируется этими четырьмя основаниями – аденином, тимином, гуанином и цитозином. Образуется нуклеотидная последовательность, которая безошибочно передается от одного поколения к другому. По такому принципу происходит формирование идентичной молекулы – репликация.

В свою очередь, нуклеотиды являются носителями всей информации, ведь каждая цепь служит своеобразной матрицей для получения новой. 

История открытия  РНК

Этот принцип был открыт Эрвином Чаргаффом в 1950 году. Но еще задолго до этого – в 1868 г. было открыто РНК, а за шесть лет до открытия принципа взаимодополняемости было доказано, что именно эта кислота есть носителем генетической информации.

Чаргафф показал, что вследствие комплементарности нуклеотидов структуры молекул ДНК и РНК химически и геометрически соответствуют друг другу. Это было огромным прорывом в изучении наследственности, расшифровке дезоксирибонуклеиновой кислоты.

 

Принцип действия

Основы действия этого явления можно описать правилом Чаргаффа, которое гласит: 
Количество пуриновых основ (аденина и гуанина) равно содержанию пиримидиновых (тимина и цитозина);
Количество аденина равняется содержанию тимина;
гуанина равно соответственно цитозину. 
Немного позже А. Белозерский установил, что количественное соотношение пуриновых и пиримидиновых оснований есть постоянным для каждого отдельного вида организма. Иными словами, это соотношение является видовой характеристикой организма. 

Для чего нужен принцип взаимодополняемости

Взаимодополняемость является важнейшей в формировании белков. Без нее невозможен синтез дочерней молекулы кислоты, которая была бы идентичной материнской.

Без нее невозможно было представить себе деление клеток, ведь в ходе деления материнской клетки каждая новая клетка получает по одной копии ДНК, которая есть всегда одинаковой. 
Комплементарность обеспечивает передачу генетической информации от поколения к поколению.

Это же позволяет понять механизм образования мутаций, а также способов их предотвращения. 
Изучения взаимодополняемости дало основание утверждать, что репликация дезоксирибонуклеиновой кислоты является важнейшим событием для деления клетки, синтеза белка.

 
Использование комплементарности в генетике и медицине
Это явление сегодня очень широко используется для внедрения в практическую медицину ДНК-технологий. Оно позволило подробнее изучить механизм развития наследственных болезней, анализировать основы их патогенеза.

Вот некоторые области медицины и генетики, где успешно применяется такой принцип: 
Благодаря современным методам молекулярной медицины были созданы вакцины для борьбы с некоторыми формами гепатита, создан человеческий инсулин;
Стало возможным восстанавливать нормальную свертываемость крови у больных гемофилией;
В организм человека можно вводить полноценные гены, их фрагменты и таким образом корригировать некоторые нарушения обмена веществ;
Стала возможной терапия некоторых форм иммунодефицита у детей;
Разрабатываются эффективные методики лечения больных фенилкетонурией, муковисцидозом, гиперхолестеринемией и другими тяжелыми наследственными болезнями;
Проводятся исследования человеческих генов.

Перспективы развития исследований 

На современном этапе развития медицины и генетики взаимодополняемость получает свое широкое применение во многих исследованиях. Так, она позволяет устанавливать, внедрять в лечебную практику такие основополагающие принципы функционирования живых организмов, как саморегуляция, взаимоотношение функциональных систем, организации функций и проч.

Комплементарность позволяет использовать такие методы лечения, которые были бы направлены как бы «внутрь» организма, с использованием его компенсаторных возможностей.

 
Изучение нуклеотидов дает большие возможности внедрять в основные методы лечения самые последние достижения генной инженерии с тем, чтобы побороть тяжелые наследственные болезни и обеспечить больным полноценную жизнь.

Интересные факты о взаимодополняемости

В ходе исследований выяснились такие интересные факты: 
В человеческом геноме свыше трех миллиардов «букв» – нуклеотидов;
Только лишь один их процент кодирует белки;
Всего у человека свыше двадцати тысяч генов;
Человеческий геном хранится в каждой(!) клетке;
Около четырех пятых всего генома «переписывается» на РНК – рибонуклеиновую кислоту;
В ДНК имеется огромное количество вспомогательных участков, контролирующих весь сложнейший процесс кодировки и синтеза белка.
Впрочем, возможности комплементарности для изучения нашего генома до конца не исследованы, так что перед нами – новые открытия, связанные с генетикой.

Источник: https://testdnk.pro/informacia/chto-takoe-komplementarnost-dnk.html

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: