Какие клетки переносят кислород в крови

Содержание
  1. Нобелевка за “управление кислородом”. Как организм спасается от гипоксии и при чем тут допинговые скандалы
  2. Зачем вообще нужен кислород
  3. Что сделали нобелиаты
  4. О ком речь
  5. Немного истории
  6. Какие клетки переносят кислород в крови
  7. состав внутренней среды организма
  8. гомеостаз
  9. кровь
  10. плазма
  11. БЕЛКИ ПЛАЗМЫ КРОВИ
  12. форменные элементы крови
  13. ЭРИТРОЦИТЫ
  14. ФЕТАЛЬНЫЙ ГЕМОГЛОБИН
  15. ЛЕЙКОЦИТЫ
  16. ТРОМБОЦИТЫ
  17. гемостаз
  18. ПРОЦЕСС ОБРАЗОВАНИЯ ТРОМБА
  19. Недостаток кислорода в крови
  20. Основные причины кислородного дефицита
  21. Дыхательная система
  22. Сердечно-сосудистая система
  23. Кровеносная система
  24. Формы гипоксии
  25. Симптоматика кислородной недостаточности
  26. Опасные последствия гипоксии
  27. Дополнительно о гипоксемии плода
  28. Способы медицинской коррекции
  29. Немедикаментозные методы
  30. Дополнительно
  31. Итоги
  32. Кровь
  33. Система крови и ее функции
  34. Функции крови
  35. Кровь — общие сведения

Нобелевка за “управление кислородом”. Как организм спасается от гипоксии и при чем тут допинговые скандалы

Какие клетки переносят кислород в крови

Нобелевская премия по физиологии и медицине 2019 года присуждена трем ученым – американцам Уильяму Кэлину и Греггу Семензе и британцу Питеру Рэтклиффу “за открытие того, как клетки распознают уровень кислорода и адаптируются к нему”.

Члены Нобелевского комитета подчеркнули фундаментальную важность открытия: способность усваивать кислород критически важна для всех животных организмов на Земле, включая человека. Мы можем долго прожить без еды, достаточно долго – без воды, но мы не можем не дышать.

Это связано с тем, что кислород, который мы вдыхаем, постоянно вовлечен в фундаментальные процессы извлечения энергии, которая необходима для жизни нашего организма.

Сегодняшние лауреаты обнаружили генетический механизм, который позволяет организму регулировать уровни кислорода в разных частях тела и управлять ими.

«Эта система, которая требуется, чтобы наше тело нормально работало. Уровни кислорода отличаются в разных частях тела, например, в мышцах во время физических упражнений его уровни очень низкие – нам знакомо выражение «анаэробные тренировки».

И нашему телу нужна система, чтобы выравнивать и регулировать уровень кислорода. Лауреаты обнаружили ее — эта система также отвечает за регулирование красных кровяных телец, которые могут переносить кислород.

Она позволила нам, так сказать, колонизировать нашу планету во всем ее разнообразии – например, уровни кислорода в горах, на высоте, куда ниже, чем привычные нам и все равно люди смогли приспособиться к ним, такова адаптивная сила организма», — подчеркнул другой член Нобелевского комитета, профессор Патрик Эрнфорш, специалист по нейронаукам.

“Это может прозвучать банально, но открытие сегодняшних лауреатов – то, что войдет в учебники биологии. Дети в возрасте 12-13 лет будут изучать это, потому что это очень, очень базовый аспект работы клеток“, — сказал член Нобелевского комитета профессор Рэндон Джонсон.

Зачем вообще нужен кислород

Наверное, каждому очевидно, что кислород (O2) очень нужен. Перекрытие его поступления в организм – при инфаркте, утоплении, повешении, сильном задымлении — приводит к быстрой смерти. Без кислорода невозможна жизнь не только такого сложного организма, как человеческий, но и куда более простых организмов и клеток.

Кислород внутри клеток на самом базовом уровне участвует в процессах извлечения энергии из питательных веществ.

Будь то углеводы или жиры, кислород нужен, чтобы окислить их – в этом процессе выделяется энергия, необходимая для всех без исключения процессов в нашем организме – биосинтеза белков, из которых состоит все внутри нас, их транспорта и всех более сложных функций, включая иммунитет и само дыхание. 

Этот процесс протекает в специальных «органах» клетки – митохондриях. В 1931 году Отто Варбург получил Нобелевскую премию по физиологии и медицине за объяснение процесса генерирования энергии – для этого необходим сложный набор ферментов.

Еще одна важная мысль – наш организм никак не может производить кислород сам.

Растения – могут, они выделяют его в ходе фотосинтеза (кстати, для жизнедеятельности растения расходуют кислород, они тоже дышат – но выделяют они его больше), а человек и животные – нет.

Поэтому нам критически важно «уметь» стабильно получать его из окружающей среды, а получив – «грамотно» распределять внутри организма. Это не такая простая задача. 

В разных условиях в окружающей среде содержится разное количество кислорода, поэтому при его недостатке телу нужно, во-первых, перераспределять его так, чтоб он шел на самое необходимое, а во-вторых, — сигнализировать нам о том, что кислорода мало и его нужно искать. То же касается уровней кислорода в разных частях тела и органах – иногда его сильнее расходует мозг, иногда – мышцы. Тогда нужно лучше снабжать их, выравнивать уровень. 

nobelprize.org

В 1938 году Нобелевскую премию получил Корней Хейманс – он обнаружил так называемся каротидные тельца. Это специальные рецепторы («датчики») в сонной артерии, которые «измеряют» уровень кислорода и сообщают мозгу, если с ними что-то не так. Это механизм адаптации/реакции на недостаток кислорода – гипоксию.

Что сделали нобелиаты

Здесь важно понять, как же реагирует на гипоксию организм. Кислорода мало, значит, его нужно лучше переносить и извлекать, а для этого нам нужно больше красных кровяных тех – эритроцитов (тех самых, что содержат гемоглобин, который измеряют врачи – низкий гемоглобин означает проблемы со снабжением органов кислородом).

Чтобы эритроцитов стало больше, при гипоксии организм выделяет гормон эритропоэтин, который и запускает их синтез. Слово эритропоэтин тоже знакомо – в связи с допинговыми скандалами. Больше кислорода в мышцах – больше спортивные успехи, поэтому спортсменами становятся те, у кого изначально хороший гемоглобин и много эритропоэтина.

 

А потом хочется еще сильнее повысить его уровень, и для этого используются как легальные, так и, к сожалению, нелегальные способы.

Однако, запомним, что в обычной жизни эритропоэтин – не допинг или яд, а гормон, которому мы обязаны жизнью, а наши клетки – возможностью дышать, получать нужное количество кислорода.

Еще с начала XX века был известен механизм гормонального контроля производства красных кровяных телец, но ученые не могли разобраться, как его запускает дефицит кислорода?

И здесь на помощь приходит генетика. Грегг Семенза и Питер Рэтклифф независимо обнаружили, что в ДНК есть особые участки рядом с теми, что кодируют сам эритропоэтин. Они-то и являются чувствительными к кислороду и «толкают» в нужный момент «соседа» по ДНК, который запускает синтез эритропоэтина.

Теперь предстояло понять, кто «приносит» к ДНК информацию о недостатке кислорода. Семенза обнаружил соответствующий белковый комплекс, он получил название HIF (hypoxia inducible factor, индуцируемый гипоксией фактор – здесь фактор означает группу белков). Два разных белка в случае гипоксии связывались с ДНК и запускали молекулярный механизм, описанный выше. 

Уильям Кэлин, занимаясь исследованием определенных типов рака, нашел еще один ген – VHL, который в нужный момент останавливает работу HIF, чтобы организм не произвел слишком много эритропоэтина и красных кровяных телец. Это механизм можно сравнить с весами – если кислорода слишком мало, HIF включается, чтоб выровнять равновесие, а VHL контролирует его работу, чтоб не допустить «перевеса» в другую сторону.

У здорового человека этот механизм критичен для метаболизма вообще – процесса выработки энергии из пищи, для компенсации при физических нагрузках, адаптации к горам, развитию эмбриона и контролю иммунитета.

Он также важен при болезнях – анемии, инсультах, инфарктах, инфекциях и ранах, — везде, где необходимо локальное усиленное снабжение кислородом.

Есть исследования, которые на основании этого механизма пытаются бороться с раковыми опухолями – если опухоль “посадить” на кислородный голод, она не сможет развиваться и расти.

“Рак питается и растет достаточно активно, в том числе опухоль выращивает дополнительные кровеносные сосуды, чтобы снабжать себя необходимым количеством кислорода. Исследования показывают, что эти белки гиперэкспрессированы в солидных опухолях (то есть их там больше чем необходимо).

Предполагается, что регуляция уровня снабжения кислородом через работу с HIF позволит замедлить рост опухоли.

Кроме этого, некоторые исследователи предполагают, что отслеживание уровня насыщения кислородом тканей может стать одним из способов обнаруживать рак, прогнозировать реакцию опухоли на лечение и ее развитие в целом”, говорит Любовь Барабанова, медицинский директор Севергрупп Медицина (сеть клиник «Скандинавия»).

nobelprize.org

О ком речь

Кэлин и Семенза родились в Нью-Йорке. Кэлин работает в медицинском институте Ховарда Хьюджеса, Семенза – в Университете Джонса Хопкинса. Сэр Питер Рэтклифф родился в Ланкашире и сейчас работает в Оксфорде.

Во время пресс-конференции, посвященной оглашению премии, секретарь Нобелевского комитета по физиологии и медицине Томас Перлманн рассказал, что ему удалось пообщаться со всеми тремя лауреатами. 

«Профессор Рэтклифф уже был в офисе, а Грегг Семенза и Билл Кэлин живут в США, они еще спали, и мне пришлось их разбудить. Последний, кому я дозвонился, был Билл. У нас не было его телефона, поэтому мне сначала удалось поговорить с его сестрой.

Она дала мне два номера телефона, я позвонил по первому из них и спросил, говорю ли я с Биллом Кэлином, и получил отрицательный ответ. Второй номер оказался правильным. Билл Кейлин был очень счастлив, не находил слов.

Все трое были очень рады и подчеркнули, что для них большая честь разделить этот приз друг с другом, именно в этом коллективе», — рассказал Перлманн.

Иногда на пресс-конференции организуют телефонные интервью с лауреатами, однако в этот раз никого из них на связи не было, на вопросы отвечал только Нобелевский комитет.

Размера премии в этом году составляет девять миллионов крон, и они будут разделены поровну между всеми тремя лауреатами.

Немного истории

В прошлом году лауреатами по физиологии и медицине стали японец Тасуку Хондзё и американец Джеймс Эллисон «за открытие терапии рака ингибированием негативной иммунной регуляции».

Всего с 1901 года было присуждено 109 Нобелевских премий в физиологии и медицине – премии не всегда вручались во время мировых войн и в нескольких других случаях.

Лауреатами стали 216 человек – правила Нобелевского комитета позволяют каждый год наградить от одного до трех человек. Среди них всего 12 женщин.

Самым молодым лауреатом был Фредерик Бантинг – он получил премию в 1923 году в возрасте 32 лет за открытие инсулина. Самым старым – Пейтон Роус, он получил премию в 1966, когда ему было 87 лет. 

Роус был награжден за открытие в области гормонального лечения рака простаты.

Один раз премия в области физиологии и медицины была присуждена посмертно – в 2011 году Ральфу Штайнману присудили премию за изучение механизма иммунного ответа, но он умер за три дня до этого.

Хотя Нобелевские премии запрещено присуждать посмертно, Нобелевский комитет не стал пересматривать решение, так как заявил, что лауреат умер уже после принятия решения о присуждении.

Источник: https://www.pravmir.ru/nobelevka-za-upravlenie-kislorodom-kak-organizm-spasaetsya-ot-gipoksii-i-pri-chem-tut-dopingovye-skandaly/

Какие клетки переносят кислород в крови

Какие клетки переносят кислород в крови

Внутренняя среда организма: кровь, лимфа, тканевая жидкость.

состав внутренней среды организма

СоставГде течетФункция
Кровь:60 % — плазма крови 40 % — форменные элементыв кровеносных сосудах
  • транспортная; 
  • защитная;
  • регуляторная;
  • гомеостатическая; 
  • терморегуляция;
  • гуморальная регуляция
 Лимфа:97 % — плазма крови3 % — лейкоцитыв лимфатических сосудах
  • защитная (иммунитет);
  • возвращение белков, воды, солей, продуктов распада из тканей в кровь;
  • водный и жировой обмен; 
  • гуморальная регуляция;
  • гомеостатическая
Тканевая жидкость:плазма крови (меньше белка)среди тканей — контактирует с клетками
  • образование лимфы;
  • транспортная (питательные вещества, газы и продукты обмена между тканями и кровеносными сосудами);
  • гомеостатическая

гомеостаз

Гомеостаз — совокупность механизмов, обеспечивающих постоянство состава внутренней среды организма. 

Для внутренней среды организма характерно относительное постоянство состава и физико-химических свойств. При изменении какого-либо параметра внутренней среды в организме включаются мощные системы саморегуляции. Они обеспечивают изменение функций многих органов и систем так, чтобы их работа восстановила исходный баланс.  

кровь

Функции крови:

  1. Транспортная: перенос кислорода от легких к тканям и углекислого газа от тканей к легким; доставка питательных веществ, витаминов, минеральных веществ и воды от органов пищеварения к тканям; удаление из тканей конечных продуктов метаболизма, лишней воды и минеральных солей.
  2. Защитная: участие в клеточных и гуморальных механизмах иммунитета, в свертывании крови и остановке кровотечения.
  3. Регуляторная: регуляция температуры, водно-солевого обмена между кровью и тканями, перенос гормонов.
  4. Гомеостатическая: поддержание стабильности показателей гомеостаза (рН, осмотического давления (давления, оказываемое растворенным веществом посредством движения его молекул) и др.).

Рис. 1. Состав крови

Элемент кровиСтроение/составФункция
 плазмажелтоватая полупрозрачная жидкость из воды, минеральных и органических веществ
  • транспорт: питательные вещества из пищеварительной системы в ткани, продукты обмена и избыток воды от тканей к органам выделительной системы;
  • свертывание крови (белок фибриноген)
эритроциты  красные клетки крови:
  • двояковогнутая форма;
  • содержат белок гемоглобин;
  • нет ядра
  • транспорт кислорода от легких к тканям;
  • транспорт углекислого газа от тканей к легким;
  • ферментативная — переносят  ферменты;
  • защитная — связывают токсические вещества;
  • питательная — транспорт аминокислоты;
  • принимают участие в свёртывании крови;
  • поддерживают постоянство рН крови 
 лейкоциты белые клетки крови:
  • есть ядро;
  • различная форма и размер;
  • некоторые способны к амебоидному движению;
  • способны проникать через стенку капилляра;
  • способны к фагоцитозу 
  • клеточный и гуморальный иммунитет;
  • разрушение погибших клеток;
  • ферментативная функция (содержат ферменты для расщепления белков, жиров, углеводов);
  • принимают участие в свёртывании крови 
 тромбоцитыкровяные пластинки:
  • способность прилипать к стенкам поврежденных сосудов (адгезия) и склеивать их;
  • способны к объединению (агрегации)
  • свертывание крови (коагуляция);
  • регенерация тканей (выделяют факторы роста);
  • иммунная защита

Первый компонент внутренней среды организма — кровь — имеет жидкую консистенцию и красный цвет. Красный цвет крови придает гемоглобин, содержащийся в эритроцитах.

Кислотно-щелочная реакция крови (рН) составляет 7,36 — 7,42.

Общее количество крови в организме взрослого человека в норме составляет 6 — 8 % от массы тела и равно примерно 4,5 — 6 л. В кровеносной системе находится 60 — 70 % крови — это так называемая циркулирующая кровь.

Другая часть крови (30 — 40 %) содержится в специальных кровяных депо (печени, селезёнке, сосудах кожи, лёгких) — это депонированная, или резервная, кровь.

При резком увеличении потребности организма в кислороде (при подъёме на высоту или усиленной физической работе), или при большой потери крови (при кровотечениях) из кровяных депо происходит выброс крови, и объем циркулирующей крови повышается.  

Кровь состоит из жидкой части — плазмы — и взвешенных в ней форменных элементов(рис. 1).

плазма

На долю плазмы приходится 55 — 60 % объема крови.

Гистологически плазма является межклеточным веществом жидкой соединительной ткани (крови).

Плазма содержит 90 — 92 % воды и 8 — 10 % сухого остатка, главным образом белков (7 — 8 %) и минеральных солей (1 %).

Основными белками плазмы являются альбумины, глобулины и фибриноген. 

БЕЛКИ ПЛАЗМЫ КРОВИ

В плазме также растворены питательные вещества: аминокислоты, глюкоза (0,11 %), липиды. В плазму поступают и конечные продукты обмена веществ: мочевина, мочевая кислота и др. В плазме содержатся также различные гормоны, ферменты и другие биологически активные вещества.

Минеральные вещества плазмы составляют около 1 % (катионы Na+Na+, K+K+, Са2+Са2+, анионыСl–Сl–, НСО–3НСО3–, НРО2−4НРО42−). 

Сыворотка крови — плазма крови, лишённая фибриногена.

Сыворотки получают либо путём естественного свёртывания плазмы (оставшаяся ждкая часть и есть сыворотка), либо путем стимуляции превращения фибриногена в нерастворимый фибрин — осаждение — ионами кальция.

форменные элементы крови

На долю форменных элементов в циркулирующей крови приходится 40 — 45 % объема.

В эмбриональный период кровь образуется одновременно с сосудами из мезенхимы. Клетки мезенхимы, дающие начало первичным элементам крови, называютсягемоцитобластами. Проходя сложный путь развития, они преобразуются в зрелые кровяные клетки.

Гемопоэз — процесс образования клеток крови.

У плода образование кровяных элементов происходит в печени, а у взрослого человека в специальных кроветворных (гемопоэтических) органах — в красном костном мозге и в селезенке.

К форменным элементам крови относятся эритроциты, лейкоциты и тромбоциты (кровяные пластинки).

ЭРИТРОЦИТЫ

Эритроциты  — красные клетки крови.

Это безъядерные, двояковогнутые, не способные к делению клетки (рис. 2).

Рис. 2. Эритроциты в артериоле

Эритроциты имеют форму двояковогнутого диска, что обеспечивает более эффективное захватывание кислорода. Кроме того, благодаря двояковогнутой форме эритроциты способны упруго деформироваться и проходить через самые тонкие капилляры (рис. 3, 4). 

Рис. 3. Эритроцит в капилляре     Рис. 4. Поток эритроцитов в капилляре

В процессе дифференцировки ядро утрачивается и весь внутренний объем эритроцита заполняется железосодержащим белком — гемоглобином.

Гемоглобин человек — это сложный белок из класса глобулинов, состоящий из 4 белковых субъединиц и гема — пигментной группы, содержащей ион железа (II) (рис. 5). 

Рис. 5. Строение гемоглобина

Именно гемоглобин присоединяет к себе кислород в капиллярах легких, превращаясь воксигемоглобин, и транспортирует его ко всем тканям организма (рис. 6).

Рис. 6. Функция гемоглобина

Гемоглобин синтезируется в клетках красного костного мозга и для нормального его образования необходимо достаточное поступление железа с пищей.

В норме содержание гемоглобина в 1 л крови взрослого человека равно 115 — 160 г.

Функции гемоглобина:

  • транспорт кислорода и углекислого газа;
  • принимает участие в поддержании постоянства рН крови (буферные свойства гемоглобина)

ФЕТАЛЬНЫЙ ГЕМОГЛОБИН

Количество эритроцитов в 1 мм33 крови взрослого человека составляет 5×106106 клеток.

У новорожденных количество эритроцитов в 1,5 — 2 раза больше, чем у взрослых; с возрастом их количество уменьшается.

У жителей высокогорных районов количество эритроцитов повышено (эритроцидоз) — адаптация к пониженному содержанию кислорода в атмосфере. Кроме того, содержание эритроцитов в крови увеличивается при физических и эмоциональных нагрузках,  потере жидкости (ожоги, рвота, понос, чрезмерное потоотделение).

Анемия — снижение количества эритроцитов и гемоглобина в крови.

Причиной анемии может быть неправильное питание (например, недостаток железа в пище), кровотечения, нарушение кроветворной функции (гемопоэза), разрушение эритроцитов под действием токсинов, при переливании несовместимой крови, резус-конфликте матери и плода.

Образуются эритроциты в красном костном мозге. 

Разрушение старых  эритроцитов происходит в печени и селезёнке.

Время жизни эритроцита — 120 суток.

Гемолиз — это разрушение эритроцитов. Разрушение эритроцитов может происходить по нескольким причинам.

Например, при механических повреждениях клеток, под влиянием химических веществ (кислот, щелочей, ядов), при помещении эритроцитов в гипотонический раствор (раствор, с более низкой концентрацией солей, чем в эритроцитах), при замораживании и нагревании, под действием электрического тока.

ЛЕЙКОЦИТЫ

Лейкоциты — белые клетки крови.  

Лейкоциты содержат ядро. Они способны изменять форму и активно передвигаться, образуя цитоплазматические выросты (рис. 7).

Лейкоциты различаются по происхождению, функциям и внешнему виду. 

Они выполняют защитную функцию: одни из них способны к фагоцитозу, другие вырабатывают антитела (рис. 8). 

Рис. 7. Лейкоцит                                                           Рис. 8. Фагоцитоз бактерий лейкоцитом

Продолжительность жизни лейкоцитов составляет от нескольких часов до нескольких суток. Образуются они в красном костном мозге и в органах иммунной системы (лимфатических узлах и селезенке).

Разрушение лейкоцитов происходит в очагах воспаления и в печени.

У взрослого человека в 1 мм33 крови насчитывается 4 — 9 x 103103 лейкоцитов.

ТРОМБОЦИТЫ

Тромбоциты — кровяные пластинки, являются безъядерными фрагментами клеток (рис. 9).

Они образуются в красном костном мозге путем отщепления безъядерных фрагментов цитоплазмы от гигантских клеток — мегакариоцитов. Из одного мегакариоцита может возникнуть до 1000 тромбоцитов (размеры тромбоцита — 2 — 3 мкм).

Рис. 9. Тромбоцит

В 1 мм33  крови содержится 180 — 320 x 103103 тромбоцитов.

Продолжительность жизни тромбоцитов в среднем 3 — 5 дней.

Разрушаются тромбоциты в селезёнке, а также в местах нарушения целостности сосудов. 

Основная функция тромбоцитов — свертывание крови (коагуляция) и остановка кровотечений (гемостаз).

Они прилипают к месту повреждения и «латают» место разрыва сосуда.

гемостаз

Обязательным условием для свертывания крови является наличие ионов Ca2+Ca2+ и факторов свёртываемости (ФС). Факторы свёртываемости — это 13 глобулиновых белков, содержащихся в плазме и форменных элементах крови, без которых свёртывание крови  невозможно. Они ообразуются в печени при участии витамина K. 

Запускается система свертывания по принципу каскада: один фактор запускает другой. 

Для участия в свертывании крови тромбоциту необходимо перейти в активное состояние.

Основные физиологические активаторы тромбоцитов:

  • коллаген (белок межклеточного вещества)
  • тромбин (белок плазмы)
  • АДФ (аденозиндифосфат, появляющийся из разрушенных клеток сосуда)

Активированные тромбоциты становятся способны прикрепляться к месту повреждения (адгезии) и друг к другу (агрегации): образуется тромбоцитарная пробка. Ее образование и запускает каскад реакций, приводящий к образованию тромба (рис. 10).  

Рис. 10. Тромб

ПРОЦЕСС ОБРАЗОВАНИЯ ТРОМБА

Уменьшение количества тромбоцитов в крови может привести к кровотечениям.

Увеличение количества тромбоцитов ведет к формированию тромбов, которые могут перекрывать кровеносные сосуды (тромбоз) и приводить к таким патологическим состояниям, как инсульт, инфаркт миокарда, легочная эмболия или закупоривание кровеносных сосудов в других органах тела.

Тромбоциты секретируют практически все белки, необходимые для коагуляции. Кроме того, разрушаясь, тромбоциты выделяют биологически активные  вещества: серотонин, адреналин, норадреналин, которые способствуют сужению просвета сосуда. 

Тромбоциты не одинаково эффективны в свертываемости крови в течение всего дня. Циркадный ритм системы организма (внутренние биологические часы) вызывает пик активации тромбоцитов утром. Это одна из главных причин, что инфаркты и инсульты более распространены в первой половине дня.

 Часть А.

К каждому заданию части А дано несколько ответов, из которых только один верный. Выберите верный, по вашему мнению, ответ.


А1. Внутреннюю среду организма составляют

1) Кровь2) Кровь, тканевая жидкость3) Кровь, тканевая жидкость, лимфа4) Кровь, тканевая жидкость, лимфа, губчатая ткань


А2. Кровь- это красная непрозрачная жидкость, состоящая из..

Источник: https://naturalpeople.ru/kakie-kletki-perenosjat-kislorod-v-krovi/

Недостаток кислорода в крови

Какие клетки переносят кислород в крови

Кислород (oxygenium, обозначение – О) является жизненно необходимым газом в составе воздуха, не имеющим цвета и запаха. Недостаточное содержание кислорода в органах и тканях человеческого организма в медицине называется гипоксией.

Нормальный уровень сатурации (насыщения кровеносных сосудов oxygenium) у взрослого человека составляет 96-98%. При снижении показателей развивается гипоксемия – нехватка кислорода в крови. Гипоксемия и гипоксия находятся в тесной корреляции.

Дефицит молекул О в крови, неизменно, приводит к кислородному голоданию всех органов и систем. Эти состояния не относятся к самостоятельным заболеваниям, а являются патологическими процессами, сопутствующими болезням сердца, головного мозга, центральной нервной системы, органов дыхания, почек, печени и т.д.

При вдыхании кислород из легких поступает в кровь, где захватывается гемоглобином – железосодержащим белком.

С помощью красных кровяных клеток (эритроцитов), гемоглобин, насыщенный кислородом, разносится по организму. Проникая в органы и ткани, гемоглобин отдает кислород для обеспечения их жизнедеятельности.

Взамен молекул oxygenium, к железосодержащему белку присоединяется диоксид углерода.

Эритроциты переносят его в обратном направлении (в легкие) для дальнейшей утилизации. Сбой процесса обмена газами в организме происходит под влиянием экзогенных или эндогенных факторов. К первым относятся внешние воздействия, не зависящие от человека, ко вторым – нарушения, происходящие внутри организма.

Основные причины кислородного дефицита

Экзогенными причинами дефицита кислорода являются:

  • разряженный воздух в окружающей среде. Такое явления характерно для высокогорных климатических районов, непроветриваемых помещений.
  • дегидратация (обезвоживание) организма, вследствие воздействия высоких температур (перегрева), на фоне недостаточного употребления воды.

Условно, к экзогенным факторам можно отнести специфические пристрастия и условия, вызывающие повышенную потребность в кислороде:

  • никотиновая зависимость;
  • увлечение подводными видами спорта или альпинизмом;
  • интенсивные спортивные тренировки и иные физические перегрузки;
  • избыточная масса тела;
  • голодание и кахексия (истощение организма);
  • тяжелые условия труда (работа в помещениях, закрытых от доступа внешней среды с недостаточной искусственной вентиляцией).

Эндогенные причины кислородного голодания связаны с различными патологиями органов дыхания, сердца, сосудов, кровеносной системы.

Дыхательная система

Артериальная гипоксемия сопровождает заболевания, для которых характерно снижение вентиляции легких:

  • пневмосклероз (замещение паренхимы легких соединительной тканью);
  • пневмония (воспаление легких);
  • плеврит (воспаление легочной оболочки);
  • обструкция органов дыхания (бронхов или легких), вследствие хронических заболеваний (астма, бронхит и т.д.);
  • перелом или сильный ушиб грудной клетки.

При бронхо-легочных патологиях количество расходуемого oxygenium превышает его поступление в кровь, что вызывает симптомы диспноэ (одышки) и боли в груди

Сердечно-сосудистая система

Циркуляторными причинами, провоцирующими дефицит кислорода, являются:

  • врожденный дефект межжелудочковой перегородки сердца, при котором происходит смешивание артериальной и венозной крови;
  • угнетение способности миокарда перекачивать кровь, иначе сердечная недостаточность;
  • воспалительные болезни миокарда (миокардит, перикардит, эндокардит);
  • ИБС (ишемическая болезнь сердца) и некроз участка миокарда (инфаркт);
  • иммунопатологические воспаления сосудов;
  • тромбоз, тромбофлебит, варикоз, атеросклероз.

Любые хронические патологии сердца и сосудов могут привести к гипоксии.

Кровеносная система

Повышенная потребность в кислороде возникает при утрате способности гемоглобина присоединяться к эритроцитам. Гемическая гипоксия может быть вызвана онкогематологическими болезнями (злокачественное поражение крови и лимфатической системы), гематологическим синдромом, иначе анемией (пониженное содержание гемоглобина в крови).

Справка! Анемия может возникать по нескольким причинам: дефицит железа в организме, внешние и внутренние кровотечения, недостаточный синтез эритроцитов в костном мозге, либо их стремительное разрушение.

Отдельно выделяют ночной и техногенный вид нехватки кислорода. Ночной вариант представляет собой апноэ – временную остановку дыхания, обусловленную чрезмерным расслаблением глотки вследствие храпа.

Техногенная гипоксия является результатом длительного пребывания или постоянного проживания в неблагополучных экологических условиях (искусственное загрязнение атмосферы промышленными отходами).

Формы гипоксии

По скорости развития классифицируют три формы гипоксии:

  • хроническая (может длиться на протяжении нескольких лет);
  • острая (до двух часов);
  • молниеносная (развивается в течение трех минут).

При несвоевременном приеме медикаментов, под воздействием нервно-психологического или физического напряжения, хронический недостаток кислорода может перейти в острую форму гипоксии.

Симптоматика кислородной недостаточности

В зависимости от степени тяжести, симптомы кислородного голодания принято разделять на две категории (ранние и поздние). К первой категории относятся:

Почему падает гемоглобин в крови?

  • головокружения, сопровождаемые цефалгическим синдромом (головными болями);
  • вялость, сонливость, гипоактивность;
  • нервно-психологическая слабость (астения);
  • повышение частоты сердечного ритма (тахикардия);
  • частое и глубокое дыхание;
  • бледность кожных покровов (нередко, синюшность в области носогубного треугольника).

Хроническая гипоксия понижает показатели АД (артериального давления). Поздние проявления нехватки oxygenium характеризуют:

  • СХУ (синдром хронической усталости);
  • дисания (нарушение сна);
  • стабильная тахикардия;
  • психоэмоциональная неадекватность (тревожность, апатия или агрессивность);
  • быстрые, ритмичные сокращения мышечных волокон ног и рук (тремор);
  • диспноэ;
  • накопление жидкости в межклеточном пространстве нижних конечностей (отечность);
  • нарушение координации (атаксия);
  • инконтиненция (недержание мочи);
  • тошнота.

Психосоматические проявления гипоксии сопровождают симптомы основного заболевания, спровоцировавшего кислородную недостаточность. Из клинико-диагностических признаков дефицита кислорода выделяют ненормированное содержание гемоглобина и повышение уровня эритроцитов в общем анализе крови.

Опасные последствия гипоксии

Длительное кислородное голодание вызывает дегенеративные процессы головного мозга и нервной системы, приводящие к энцефалопатии и деменции (слабоумию), повышенный риск инфарктов, инсультов, отека легких, гипотонию, судорожный синдром. Острая кислородная недостаточность опасна развитием коматозного состояния и летальным исходом.

Дополнительно о гипоксемии плода

Отдельного внимания заслуживает дефицит кислорода у женщины в перинатальный период. Гипоксемия у будущей мамы отражается низким кислородным снабжением плода. Состояние представляет опасность:

  • отставания ребенка в развитии;
  • фетопатии (патологии плода);
  • преждевременного родоразрешения;
  • отслойки плаценты;
  • внутриутробной гибели малыша.

Своевременно выявить гипоксию плода помогают плановые скрининги беременных

Способы медицинской коррекции

Лечение кислородного голодания – это комплекс мер, направленных, прежде всего, на ликвидацию причины гипоксемии. При проявлении симптомов нехватки кислорода врач должен скорректировать терапию основного заболевания. В зависимости от патологии и особенностей ее течения, пациентам могут быть назначены:

  • препараты, разжижающие кровь;
  • регуляторы окислительно-восстановительных процессов;
  • витаминно-минеральные комплексы;
  • железосодержащие лекарства;
  • медикаменты, улучшающие кровообращение.

Сердечно-сосудистые средства (кардиотоники) и лекарства от легочных болезней подбираются индивидуально. Для повышения вентиляции легких используется оксигенотерапия:

  • ингаляционная (посредством кислородной маски или носового катетера, через кислородную подушку);
  • гипербарическая оксигенация с помощью сеансов в барокамере;
  • неингаляционная (внутривенное введение физраствора, обогащенного перекисью водорода и озоном).

Гипоксемия, связанная с нарушением кроветворения, лечится посредством гемотрансфузии (переливание крови). Оксигенотерапия и гемотрансфузия проводятся в стационарных условиях.

Немедикаментозные методы

Повысить кислород в крови, не прибегая к лекарственным препаратам, помогают:

  • Рациональная физическая нагрузка. При выполнении физических упражнений естественным образом кровь насыщается молекулами oxygenium, ускоряется обмен веществ, стабилизируется уровень АД.
  • Ежедневное пребывание на свежем воздухе. Для прогулок следует выбирать парковые зоны, расположенные вдали от промышленных предприятий, железнодорожных и автомобильных магистралей.
  • Йога и дыхательная гимнастика. Рекомендуется пациентам с ограниченными физическими возможностями. Специальные упражнения для поверхностного и глубокого дыхания позволяют увеличить скорость газообмена.
  • Соблюдение режима труда и отдыха. Человеку, страдающему от гипоксии, необходим полноценный сон, и категорически противопоказаны нервные и физические перегрузки.
  • Использование средств народной медицины. Фитоотвары, обладающие сосудорасширяющими и антиоксидантными свойствами, готовят на основе боярышника, березовых и брусничных листьев, гинкго билобы.

Важно! Растительное сырье может иметь противопоказания. Перед применением необходимо получить одобрение лечащего врача.

Не менее важным условием нормальной концентрации кислорода в крови является здоровое питание и правильный питьевой режим. Необходимо обогатить рацион овощами, фруктами, зеленью – в качестве натуральных витаминов, выпивать ежедневно до двух литров чистой (не газированной) воды.

Наиболее эффективный результат при гипоксии дают занятия физкультурой на свежем воздухе

Дополнительно

При развитии острой гипоксии человеку требуется экстренная медицинская помощь, с последующей госпитализацией. До приезда бригады скорой помощи необходимо обеспечить пациенту доступ свежего воздуха (ослабить ворот одежды, открыть окна), измерить частоту сердечных сокращений (пульс). При наличии медицинских навыков, по необходимости, провести процедуру искусственного дыхания.

Итоги

Недостаток кислорода в крови может быть обусловлен:

  • наличием хронических патологий сердечно-сосудистой, кровеносной и дыхательной системы;
  • обильным кровотечением;
  • неблагоприятными условиями (высокогорный климат, работа в шахте);
  • образом жизни (никотиновая зависимость, увлечение подводным плаваньем и альпинизмом, нерациональные физические нагрузки, голодание и т.д.).

Состояние кислородного голодания может иметь острую и хроническую форму. В первом случае, пациенту показана срочная госпитализация. При острой гипоксии возникает серьезная опасность развития удушья, коматозного состояния, остановки сердечной деятельности и летального исхода.

В повышении кислорода задействуют внутривенные медицинские препараты и процедуры искусственного насыщения крови молекулами oxygenium. При хронической форме гипоксии назначаются медикаменты, диетотерапия, лечебная физкультура. Поднять кислородный уровень помогает дыхательная гимнастика, регулярные прогулки в лесополосе, занятия йогой, средства народной медицины.

Избыток кислорода в крови, так же, как и его недостаток, вреден для здоровья. Кислородное отравление может привести к чрезмерному образованию свободных радикалов, которые ускоряют процесс старения организма и активизируют раковые клетки.

Источник: https://apkhleb.ru/krov/nedostatok-kisloroda

Кровь

Какие клетки переносят кислород в крови

Нормальная жизнедеятельность клеток организма возможна только при условии постоянства его внутренней среды. Истинной внутренней средой организма является межклеточная (интерстициальная) жидкость, которая непосредственно контактирует с клетками.

Однако постоянство межклеточной жидкости во многом определяется составом крови и лимфы, поэтому в широком понимании внутренней среды в ее состав включают: межклеточную жидкость, кровь и лимфу, спиномозговую, суставную и плевральную жидкость.

Между кровью, межклеточной жидкостью и лимфой осуществляется постоянный обмен, направленный на обеспечение непрерывного поступления к клеткам необходимых веществ и удаление оттуда продуктов их жизнедеятельности.

Постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом.

Гомеостаз — это динамическое постоянство внутренней среды, который характеризуется множеством относительно постоянных количественных показателей, получивших название физиологических, или биологических, констант. Эти константы обеспечивают оптимальные (наилучшие) условия жизнедеятельности клеток организма, а с другой — отражают его нормальное состояние.

Важнейшим компонентом внутренней среды организма является кровь.

Система крови и ее функции

Представление о крови как системе создал Г.Ф. Ланг в 1939 г. В эту систему он включил четыре части:

  • периферическая кровь, циркулирующая по сосудам;
  • органы кроветворения (красный костный мозг, лимфатические узлы и селезенка);
  • органы кроверазрушения;
  • реулирующий нейрогуморальный аппарат.

Функции крови

Транспортная функция — заключается в транспорте различных веществ (энергии и информации, в них заключенных) и тепла в пределах организма. Кровью осуществляются также транспорт гормонов, других сигнальных молекул и биологически активных веществ.

Дыхательная функция — переносит дыхательные газы — кислород (02) и углекислый газ (СО?) — как в физически растворенном, так и химически связанном виде. Кислород доставляется от легких к потребляющим его клеткам органов и тканей, а углекислый газ — наоборот от клеток к легким.

Питательная функция — кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, витаминами, минеральными веществами, водой; переносит также питательные вещества от органов, где они всасываются или депонируются, к месту их потребления.

Выделительная (экскреторная) функция — при биологическом окислении питательных веществ, в клетках образуются, кроме СО2, другие конечные продукты обмена (мочевина, мочевая кислота), которые транспортируются кровью к выделительным органам: почкам, легким, потовым железам, кишечнику.

Терморегулирующая функция — благодаря своей высокой теплоемкости кровь обеспечивает перенос тепла и его перераспределение в организме. Кровью переносится около 70% тепла, образующегося во внутренних органах в кожу и легкие, что обеспечивает рассеяние ими тепла в окружающую среду.

В организме имеются механизмы, которые обеспечивают быстрое сужение сосудов кожи при понижении температуры окружающего воздуха и расширение сосудов при повышении.

Это приводит к уменьшению или увеличению потери тепла, так как плазма состоит на 90-92% из воды и обладает вследствие этого высокой теплопроводностью и удельной теплоемкостью.

Гомеостатическая функция — кровь участвует в водно-солевом обмене в организме, поддерживает стабильность ряда констант гомеостаза — рН, осмотического давления и др.; обеспечение водно-солевого обмена между кровью и тканями — в артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляров возвращаются в кровь.

Защитная функция заключается прежде всего в обеспечении иммунных реакций, а также создании кровяных и тканевых барьеров против чужеродных веществ, микроорганизмов, дефектных клеток собственного организма.

Вторым проявлением защитной функции крови являетcя ее участие в поддержании своего жидкого агрегатного состояния (текучести), а также остановке кровотечения при повреждении стенок сосудов и восстановлении их проходимости после репарации дефектов.

Осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение степени дифференцированности клеток, восстановление и поддержание структуры тканей.

Кровь — общие сведения

Кровь состоит из жидкой части — плазмы и взвешенных в ней клеток (форменных элементов): эритроцитов (красных кровяных телец), лейкоцитов (белых кровяных телец) и тромбоцитов (кровяных пластинок).

Между плазмой и форменными элементами крови существуют определенные объемные соотношения. Установлено, что на долю форменных элементов приходится 40-45%, крови, а на долю плазмы — 55-60%.

Общее количество крови в организме взрослого человека в норме составляет 6-8 % массы тела, т.е. примерно 4,5-6 л. Объем циркулирующей крови относительно постоянен, несмотря на непрерывное всасывание воды из желудка и кишечника. Это объясняется строгим балансом между поступлением и выделением воды из организма.

Если вязкость воды принять за единицу, то вязкость плазмы крови равна 1,7-2,2, а вязкость цельной крови — около 5.

Вязкость крови обусловлена наличием белков и особенно эритроцитов, которые при своем движении преодолевают силы внешнего и внутреннего трения. Вязкость увеличивается при сгущении крови, т.е.

потере воды (например, при поносах или обильном потении), а также при возрастании количества эритроцитов в крови.

Плазма крови содержит 90-92% воды и 8-10% сухого вещества, главным образом, белков и солей.

В плазме находится ряд белков, отличающихся по своим свойствам и функциональному значению, — альбумины (около 4,5%), глобулины (2-3%) и фибриноген (0,2-0,4%).

Общее количество белка в плазме крови человека составляет 7-8 %. Остальная часть плотного остатка плазмы приходится на долю других органических соединений и минеральных солей.

Наряду с ними в крови находятся продукты распада белков и нуклеиновых кислот (мочевина, креатин, креатинин, мочевая кислота, подлежащие выведению из организма). Половина общего количества небелкового азота в плазме — так называемого остаточного азота — приходится на долю мочевины.

Лекция врача-нутрициолога Аркадия Бибикова

Источник: https://happyfamily-nsp.com/krov/

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: