Какие из пластид выполняют следующие функции фотосинтез

Содержание
  1. Пластиды: виды, строение и функции. Хлоропласты, хромопласты, лейкопласты
  2. Строение и функции хлоропластов
  3. Хлорофилл
  4. Строение и функции хромопластов
  5. Строение и функции лейкопластов
  6. Сводная таблица строения и функций пластид
  7. Фотосинтез
  8. Светозависимая фаза (световая)
  9. Светонезависимая (темновая) фаза
  10. Значение фотосинтеза
  11. Хемосинтез (греч. chemeia – химия + synthesis – синтез)
  12. Значение хемосинтеза
  13. Строение растительной клетки и ее функции: пластиды, цитоплазма, органеллы; отличия растительной и животной клетки
  14. Особенности строения растительной клетки
  15. Плазматическая мембрана
  16. Цитоплазма
  17. Эндоплазматическая сеть
  18. Митохондрии
  19. Пластиды
  20. Комплекс Гольджи
  21. Лизосомы
  22. Вакуоли
  23. Ядро
  24. Отличие от животной клетки
  25. Сходства
  26. Отличия
  27. Тест
  28. Виды, строение и функции пластид
  29. Виды
  30. Строение пластид
  31. Хлоропласты
  32. Хромопласты
  33. Лейкопласты
  34. Функции пластид
  35. Значение хлоропластов
  36. Функции хромопластов
  37. Роль лейкопластов
  38. Пигменты пластид
  39. Происхождение пластид
  40. Какого цвета могут быть пластиды?
  41. Что такое фотосинтез? История открытия процесса, фазы фотосинтеза и его значение
  42. Значение фотосинтеза для жизни на Земле
  43. Определение и формула фотосинтеза
  44. Фазы фотосинтеза
  45. Световая фаза фотосинтеза
  46. Темновая фаза фотосинтеза

Пластиды: виды, строение и функции. Хлоропласты, хромопласты, лейкопласты

Какие из пластид выполняют следующие функции фотосинтез

Пластиды — органоиды, специфичные для клеток растений (они имеются в клетках всех растений, за исключением большинства бактерий, грибов и некоторых водорослей).

В клетках высших растений находится обычно от 10 до 200 пластид размером 3-10мкм, чаще всего имеющих форму двояковыпуклой линзы. У водорослей зеленые пластиды, называемые хроматофорами, очень разнообразны по форме и величине. Они могут иметь звездчатую, лентовидную, сетчатую и другие формы.

Различают 3 вида пластид:

  • Бесцветные пластиды — лейкопласты;
  • окрашенные — хлоропласты (зеленого цвета);
  • окрашенные — хромопласты (желтого, красного и других цветов).

Эти виды пластид до известной степени способны превращаться друг в друга — лейкопласты при накоплении хлорофилла переходят в хлоропласты, а последние при появлении красных, бурых и других пигментов — в хромопласты.

Строение и функции хлоропластов

Хлоропласты — зеленые пластиды, содержащие зеленый пигмент — хлорофилл.

Основная функция хлоропласт — фотосинтез.

В хлоропластах есть свои рибосомы, ДНК, РНК, включения жира, зерна крахмала. Снаружи хлоропласта покрыты двумя белково-липидными мембранами, а в их полужидкую строму (основное вещество) погружены мелкие тельца — граны и мембранные каналы.

Строение хлоропласта

Граны (размером около 1мкм) — пакеты круглых плоских мешочков (тилакоидов), сложенных подобно столбику монет.

Располагаются они перпендикулярно поверхности хлоропласта. Тилакоиды соседних гран соединены между собой мембранными каналами, образуя единую систему. Число гран в хлоропластах различно.

Например, в клетках шпината каждый хлоропласт содержит 40-60 гран.

Хлоропласты внутри клетки могут двигаться пассивно, увлекаемые током цитоплазмы, либо активно перемещаться с места на место.

  • Если свет очень интенсивен, они поворачиваются ребром к ярким лучам солнца и выстраиваются вдоль стенок, параллельных свету.
  • При слабом освещении, хлоропласты перемещаются на стенки клетки, обращенные к свету, и поворачиваются к нему своей большой поверхностью.
  • При средней освещенности они занимают среднее положение.

Этим достигаются наиболее благоприятные для процесса фотосинтеза условия освещения.

Хлорофилл

В гранах пластид растительной клетки содержится хлорофилл, упакованный с белковыми и фосфолипидными молекулами так, чтобы обеспечить способность улавливать световую энергию.

Молекула хлорофилла очень сходна с молекулой гемоглобина и отличается главным образом тем, что расположенный в центре молекулы гемоглобина атом железа заменен в хлорофилле на атом магния.

Сходство молекулы хлорофилла и молекулы гемоглобина

В природе встречается четыре типа хлорофилла: a, b, c, d.

Хлорофиллы a и b содержат высшие растения и зеленые водоросли, диатомовые водоросли содержат a и c, красные — a и d.

Лучше других изучены хлорофиллы a и b (их впервые разделил русский ученый М.С.Цвет в начале XXв.). Кроме них существуют четыре вида бактериохлорофиллов — зеленых пигментов пурпурных и зеленых бактерий: a, b, c, d.

Большинство фотосинтезирующих бактерий содержат бактериохлорофилл a, некоторые — бактериохлорофилл b, зеленые бактерии — c и d.

Хлорофилл обладает способностью очень эффективно поглощать солнечную энергию и передавать ее другим молекулам, что является его главной функцией. Благодаря этой способности хлорофилл — единственная структура на Земле, которая обеспечивает процесс фотосинтеза.

функция хлорофилла в растениях — поглощение энергии света и передача ее другим клеткам.

Пластидам, так же, как и митохондриям, свойственна до некоторой степени автономность внутри клетки. Они размножаются путем деления.

Наряду с фотосинтезом, в пластидах происходит процесс биосинтеза белка. Благодаря содержанию ДНК пластиды играют определенную роль в передаче признаков по наследству (цитоплазматическая наследственность).

Строение и функции хромопластов

Хромопласты относятся к одному из трех видов пластид высших растений. Это небольших размеров, внутриклеточные органеллы.

Хромопласты имеют различный окрас: желтый, красный, коричневый. Они придают характерный цвет созревшим плодам, цветкам, осенней листве. Это необходимо для привлечения насекомых-опылителей и животных, которые питаются плодами и разносят семена на дальние расстояния.

Строение хромопласта

Структура хромопласта похожа на другие пластиды. Их двух оболочек внутренняя развита слабо, иногда вовсе отсутствует. В ограниченном пространстве расположена белковая строма, ДНК и пигментные вещества (каротиноиды).

Каротиноиды – это жирорастворимые пигменты, которые накапливаются в виде кристаллов.

Форма хромопластов очень разнообразна: овальная, многоугольная, игольчатая, серповидная.

Роль хромопластов в жизни растительной клетки до конца не выяснена. Исследователи предполагают, что пигментные вещества играют важную роль в окислительно-восстановительных процессах, необходимы для размножения и физиологичного развития клетки.

Строение и функции лейкопластов

Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.

Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.

Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.

Строение лейкопласта

Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).

Разновидности лейкопластов:

  1. Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
  2. Элайопласты продуцируют и запасают жиры.
  3. Протеинопласты содержат белковые вещества.

Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.

В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.

Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.

Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.

Важно знать! Одновременно в клетке растения может находиться только один вид пластид.

Сводная таблица строения и функций пластид

СвойстваХлоропластыХромопластыЛейкопласты
СтроениеДвухмембранная органелла, с гранами и мембранными канальцамиОрганелла с не развитой внутренней мембранной системойМелкие органеллы, находятся в частях растения, скрытых от света
ОкрасЗеленыеРазноцветныеБесцветные
ПигментХлорофиллКаротиноидОтсутствует
ФормаОкруглаяМногоугольнаяШаровидная
ФункцииФотосинтезПривлечение потенциальных распространителей растенийЗапас питательных веществ
ЗаменимостьПереходят в хромопластыНе изменяются, это последняя стадия развития пластидПревращаются в хлоропласты и хромопласты

Оцените, пожалуйста, статью. Мы старались:) (18 4,83 из 5)
Загрузка…

Источник: https://animals-world.ru/plastidy-stroenie-kletki/

Фотосинтез

Какие из пластид выполняют следующие функции фотосинтез

По типу питания живые организмы делятся на автотрофы, гетеротрофы и миксотрофы. Автотрофы (греч. αὐτός — сам + τροφ – пища) – организмы, которые самостоятельно способны синтезировать органические вещества из неорганических. Гетеротрофы (греч. ἕτερος – иной + τροφή – пища) – организмы, использующие для питания готовые органические вещества.

Наконец, миксотрофы (греч. μῖξις – смешение + τροφή – пища) – организмы, которые могут использовать как гетеротрофный, так и автотрофный способ питания. К примеру, эвглена зеленая на свету начинает фотосинтезировать, а в темноте питается гетеротрофно.

Фотосинтез (греч. φῶς – свет и σύνθεσις – синтез) – сложный химический процесс преобразования энергии квантов света в энергию химических связей. В результате фотосинтеза происходит синтез органических веществ из неорганических.

Этот процесс уникален и происходит только в растительных клетках, а также у некоторых бактерий. Фотосинтез осуществляется при участии хлорофилла (греч. χλωρός – зелёный и φύλλον – лист) – зеленого пигмента, окрашивающего органы растений в зеленый цвет. Существуют и другие вспомогательные пигменты, которые вместе с хлорофиллом выполняют светособирающую или светозащитную функции.

Ниже вы увидите сравнение строения хлорофилла и гемоглобина. Обратите внимание, что в центре молекулы хлорофилла находится ион Mg.

В высшей степени гениально значение процесса фотосинтеза подчеркнул русский ученый К.А.

Тимирязев: “Все органические вещества, как бы они ни были разнообразны, где бы они ни встречались, в растении ли, в животном или человеке, прошли через лист, произошли от веществ, выработанных листом.

Вне листа или, вернее, вне хлорофиллового зерна в природе не существует лаборатории, где бы выделялось органическое вещество. Во всех других органах и организмах оно превращается, преобразуется, только здесь оно образуется вновь из вещества неорганического”

Более подробно мы обсудим значение фотосинтеза в завершение этой статьи. Фотосинтез состоит из двух фаз: светозависимой (световой) и светонезависимой (темновой). Я рекомендую использовать названия светозависимая и светонезависимая, так как они способствуют более глубокому (и правильному!) пониманию фотосинтеза.

Светозависимая фаза (световая)

Эта фаза происходит только на свету на мембранах тилакоидов в хлоропластах. В ней принимают участие различные ферменты, белки-переносчики, молекулы АТФ-синтетазы и зеленый пигмент хлорофилл.

Хлорофилл выполняет две функции: поглощения и передачи энергии. При воздействии кванта света хлорофилл теряет электрон, переходя в возбужденное состояние. С помощью переносчиков электроны скапливаются с наружной поверхности мембраны тилакоидов, тем временем внутри тилакоида происходит фотолиз воды (разложение под действием света):

H2O –> H+ + OH-

Гидроксид-ионы отдают лишний электрон, превращаясь в реакционно способные радикалы OH, которые собираются вместе и образуют молекулу воды и свободный кислород (это побочный продукт, который в дальнейшем удаляется в ходе газообмена).

4OH –> 2H2O + O2↑

Образовавшиеся при фотолизе воды протоны (H+) скапливаются с внутренней стороны мембраны тилакоидов, а электроны – с внешней. В результате по обе стороны мембраны накапливаются противоположные заряды.

При достижении критической разницы, часть протонов проталкивается на внешнюю сторону мембраны через канал АТФ-синтетазы. В результате этого выделяется энергия, которая может быть использована для фосфорилирования молекул АДФ:

Протоны, попав на поверхность мембраны тилакоидов, соединяются с электронами и образуют атомарный водород, который используется для восстановления молекулы-переносчика НАДФ (никотинамиддинуклеотидфосфат). Благодаря этому окисленная форма – НАФД+ превращается в восстановленную – НАДФ∗H2.

Предлагаю создать квинтэссенцию из полученных нами знаний. Итак, в результате светозависимой фазы фотосинтеза образуются:

  • Свободный кислород O2 – в результате фотолиза воды
  • АТФ – универсальный источник энергии
  • НАДФ∗H2 – форма запасания атомов водорода

Кислород удаляется из клетки как побочный продукт фотосинтеза, он совершенно не нужен растению. АТФ и НАДФ∗H2 в дальнейшем оказываются более полезны: они транспортируются в строму хлоропласта и принимают участие в светонезависимой фазе фотосинтеза.

Светонезависимая (темновая) фаза

Светонезависимая фаза происходит в строме (матриксе) хлоропласта постоянно: и днем, и ночью – вне зависимости от освещения.

При участии АТФ и НАДФ∗H2 происходит восстановление CO2 до глюкозы C6H12O6. В светонезависимой фазе происходит цикл Кальвина, в ходе которого и образуется глюкоза. Для образования одной молекулы глюкозы требуется 6 молекул CO2, 12 НАДФ∗H2 и 18 АТФ.

Таким образом, в результате темновой (светонезависимой) фазы фотосинтеза образуется глюкоза, которая в дальнейшем может быть преобразована в крахмал, служащий для запасания питательных веществ у растений.

Значение фотосинтеза

Значение фотосинтеза невозможно переоценить. Уверенно утверждаю: именно благодаря этому процессу жизнь на Земле приобрела такие чудесные и изумительные формы, какие мы видим вокруг себя: удивительные растения, прекрасные цветы и самые разнообразные животные.

В разделе эволюции мы уже обсуждали, что изначально в составе атмосферы Земли не было кислорода: миллиарды лет назад его начали вырабатывать первые фотосинтезирующие бактерии – сине-зеленые водоросли (цианобактерии). Постепенно кислород накапливался, и со временем на Земле стало возможно аэробное (кислородное) дыхание. Возник озоновый слой, защищающий все живое на нашей планете от губительного ультрафиолета.

Говоря о роли фотосинтеза, выделим следующие функции, объединяющиеся в так называемую космическую роль растений.

Итак, растения за счет фотосинтеза:

  • Синтезируют органические вещества, являющиеся пищей для всего живого на планете
  • Преобразуют энергию света в энергию химических связей, создают органическую массу
  • Растения поддерживают определенный процент содержания O2 в атмосфере, очищают ее от избытка CO2
  • Способствуют образованию защитного озонового экрана, поглощающего губительное для жизни ультрафиолетовое излучение

Хемосинтез (греч. chemeia – химия + synthesis – синтез)

Хемосинтез – автотрофный тип питания, который характерен для некоторых микроорганизмов, способных создавать органические вещества из неорганических. Это осуществляется за счет энергии, получаемой при окислении других неорганических соединений (железо- , азото-, серосодержащих веществ).

Хемосинтез был открыт русским микробиологом С.Н. Виноградским в 1888 году. Большинство хемосинтезирующих бактерий относится к аэробам, для жизни им необходим кислород.

При окислении неорганических веществ выделяется энергия, которую организмы запасают в виде энергии химических связей. Так нитрифицирующие бактерии последовательно окисляют аммиак до нитрита, а затем – нитрата. Нитраты могут быть усвоены растениями и служат удобрением.

Помимо нитрифицирующих бактерий, встречаются:

  • Серобактерии – окисляют H2S –> S 0 –> (S+4O3)2- –> (S+6O4)2-
  • Железобактерии – окисляют Fe+2 –>Fe+3
  • Водородные бактерии – окисляют H2 –> H+12O
  • Карбоксидобактерии – окисляют CO до CO2

Значение хемосинтеза

Хемосинтезирующие бактерии являются неотъемлемым звеном круговорота в природе таких элементов как: азот, сера, железо.

Нитрифицирующие бактерии обеспечивают переработку (нейтрализацию) ядовитого вещества – аммиака. Они также обогащают почву нитратами, которые очень важны для нормального роста и развития растений (это происходит за счет клубеньковых бактерий на корнях бобовых растений).

Источник: https://studarium.ru/article/124

Строение растительной клетки и ее функции: пластиды, цитоплазма, органеллы; отличия растительной и животной клетки

Какие из пластид выполняют следующие функции фотосинтез

В биологии клеточное строение организмов является одним из важнейших предметов изучения. Клетка является самой маленькой составной частью организма, которой присущи свойства живого. Если представить, что живой организм — это архитектурное сооружение, то клетки будут являться «кирпичами», из которых этот дом состоит.

Строение растительной клетки и ее функции обеспечивают рост, развитие и, самое главное, жизнь растению. Ниже на схеме представлено клеточное строение растения.

Особенности строения растительной клетки

Все растения можно подразделить на одноклеточные и многоклеточные. К организмам, состоящим из одной клетки, относятся в основном одноклеточные водоросли.

Многоклеточные представители флоры — это сложные конструкции из органов, тканей и мельчайших частиц, которые находятся в постоянном взаимодействии.

Клеточное строение растений примерно одинаково у всех видов флоры и состоит из нескольких компонентов.

Плазматическая мембрана

Имеет другие названия — клеточная мембрана, цитолемма, плазмалемма. Разделяет клетку и внешнюю среду, обеспечивая обмен между ними. Она состоит из двух слоев, образованных липидами (сложными органическими соединениями, которые включают в себя жирные кислоты и спирт).

В небольшом количестве цитолемма содержит и белки: одни проходят через всю мембрану (интегральные), другие — наполовину погружены в слой липидов (полуинтегральные) или просто соприкасаются с внешней стороной мембраны (поверхностные). Толщина всей конструкции составляет не более 9 нм.

Плазмалемма выполняет следующие функции:

  • механическая — благодаря мембране клетки является самостоятельными образованиями, составляющими основу тканей;
  • энергетическая — обеспечивает перенос энергии при фотосинтезе и клеточном дыхании;
  • транспортная — через мембрану проходит обмен питательными и другими веществами между соседними клетками;
  • барьерная — защищает клеточное содержимое от негативных воздействий;
  • рецепторная — благодаря некоторым белкам-рецепторам клетка принимает и распознает различные сигналы.

Очень важную роль играют ионные каналы, относящиеся к транспортным белкам. Благодаря им во внутриклеточное пространство проникают питательные вещества именно через плазматическую мембрану.

Цитоплазма

Представляет собой прозрачную жидкую емкость, в которой расположены основные клеточные компоненты. Ее со всех сторон окружает плазмалемма. Это очень сложная органическая структура, состоящая из постоянно меняющейся смеси различных веществ. Ее основу составляет вода, количество которой может достигать 90 %. Благодаря водному раствору здесь протекают сложные химические реакции.

Клеточное содержимое выполняет большую роль в жизнедеятельности клетки:

  • представляет собой единое целое;
  • обеспечивает химические реакции и процессы;
  • обеспечивает транспортировку веществ;
  • устанавливает для каждого органоида свое собственное местоположение.

Так как цитоплазма — это живое вещество, то для нее характерна избирательная проницаемость: одни вещества легко проникают в ее внутреннее содержимое (вода), другие — могут задерживаться в ней.

Эндоплазматическая сеть

По-другому называется эндоплазматический ретикулум. Пронизывает всю внутреннюю часть клетки с помощью многочисленных трубочек, каналов и пузырьков, тем самым обеспечивая точное расположение клеточного ядра и других компонентов (органоидов).

Главной задачей ЭПС является система транспортировки полезных веществ. Помимо этого, с его помощью осуществляется синтез клеточных мембран, являющийся основным свойством клеток растений.

Митохондрии

Являются клеточными органоидами, расположенными по всему клеточному содержимому. Они весьма разнообразны и могут быть в виде палочки, цилиндрической формы, нитевидной или в форме зернышек. Обычно их количество в клеточном составе насчитывает несколько сотен. Средняя толщина митохондрии — около одного микрона.

Митохондрии состоят из белка (65 %) и липидов (30 %). Немаловажным фактом является наличие нуклеиновых кислот — ДНК и РНК.

Роль и значение митохондрий были открыты лишь недавно. Оказалось, что в основном благодаря им обеспечиваются дыхательные процессы, а также происходит высвобождение энергии для поддержания жизнедеятельности.

Пластиды

Эти вещества входят в клеточный состав только у представителей флоры — высших растений, водорослей и простейших, обладающих способностью к фотосинтезу. Данные органоиды имеют довольно крупную форму.

В зависимости от роли, цвета и формы различают следующие типы пластид:

  1. Хлоропласты. Их необычная роль заключается в придаче зеленого окраса растениям. В своем составе они содержат хлорофилл, который и придает хлоропластам соответствующий оттенок. Помимо хлорофилла в состав хлоропластов входят белки, составляющие половину веса зеленых пластидов, а также РНК и ДНК.
  2. Хромопласты. Еще более интересную задачу выполняют желтые, оранжевые или красные хромопласты. Они окрашивают в соответствующие цвета лепестки цветковых растений и различных плодов. Такой оттенок хромопластам придают специальные пигменты — каротиноиды. Таким образом, яркая окраска цветов привлекает многочисленных насекомых для опыления и дальнейшего размножения растений.
  3. Лейкопласты. В отличие от хлоропластов и хромопластов не имеют цвета. Их роль заключается в накоплении и запасании питательных веществ — белков, жиров и крахмала.

Несмотря на разнообразие, все пластиды высших растений выполняют определенные функции: фотосинтез, синтез органических веществ, восстанавливают неорганические ионы, запасают питательные вещества.

Комплекс Гольджи

В некоторых местах клеточной внутренней среды можно различить стопку изогнутых и близко расположенных пластинок, окруженных большими и малыми пузырьками. Эта конструкция носит название диктиосомы, или комплекса Гольджи, названного в честь открывшего его итальянского ученого.

Аппарат Гольджи содержит специальные емкости — «цистерны», в которых происходит созревание белков. Далее, после их созревания, диктиосома выполняет свою главную задачу — сортировка и транспорт белков.

Лизосомы

Органоиды, ограниченные мембраной. Лизосомы образуются только в эукариотах, то есть клетках, имеющих ядро. Соответственно, в безъядерных прокариотах они отсутствуют, так как те не обладают внутриклеточным пищеварением.

Таким образом, можно выявить основную задачу лизосом — внутриклеточное переваривание макромолекул. Для этой цели внутри органоидов расположены гидролитические ферменты, ускоряющие химические реакции.

Следует отметить, что в растениях лизосомы как таковые отсутствуют. Вместо них роль внутриклеточного пищеварения выполняют вакуоли, имеющие тем самым большое сходство с лизосомами.

Вакуоли

Представляют собой органоиды, которые отделены от остальной части клетки одной мембраной (тонопластом). Вакуоли находятся в клетках растений и грибов, но могут встречаться и у некоторых животных и бактерий.

Зрелые клетки имеют в своем составе одну большую вакуоль, которая может занимать до 90 % всего объема. При этом, располагаясь в центре, такая вакуоль вытесняет остальное содержимое вдоль клеточной оболочки.

Как уже говорилось выше, вакуоли играют такую же роль, как и лизосомы. Помимо пищеварения, они поддерживают внутриклеточное давление, хранят в себе полезные и уничтожают токсичные вещества, а также способствуют росту самой клетки.

Ядро

Являясь самым крупным органоидом, ядро управляет почти всеми клеточными процессами.

Помимо этого, в ядре хранится и воспроизводится наследственная информация, большая часть которой сосредоточена в хромосомах.

В молодых клетках ядро располагается в центре, в то время как у зрелых оно вытесняется выросшей вакуолью к оболочке. Ядро обычно имеет форму шара или эллипса и покрыто двумя слоями мембраны.

Внутри ядро заполнено ядерным соком, состоящим из геля или золя, в которых находятся ядрышки. Ядрышко содержит в своем составе РНК и белки, содержащие фосфор. Остальная часть ядра содержит в себе ДНК.

Без ядра клетка не может существовать. Исключение составляют лишь некоторые представители, например, эритроциты, находящиеся в крови человека. Однако и ядро неспособно жить и развиваться без остальных клеточных компонентов, от которых оно получает энергию. Благодаря ядру и содержащейся в нем информации в клетке протекают заранее сформированные и упорядоченные процессы.

Отличие от животной клетки

Строение при помощи клеток свойственно всем живым существам — как растениям, так и животным. Эукариоты тех и других имеют как сходства, так и различия.

Сходства

Клеткам представителей флоры и фауны свойственно достаточно много общих компонентов и характеристик. Так, все клетки способны развиваться, размножаться и саморегулироваться.

Ниже представлены основные общие черты клеточного строения живых существ:

  • одинаковые органоиды: ядро, внутреннее содержимое, эндоплазматический ретикулум, плазмалемма, митохондрии, комплекс Гольджи;
  • практически одинаково протекают химические процессы;
  • все клеточные компоненты состоят из схожих химических элементов;
  • схожие способы деления и передачи наследственной информации.

Помимо обычных органоидов состав клеток растений и животных содержит в себе так называемые включения. Располагаясь в различных органеллах, эти включения могут время от времени исчезать и появляться вновь. Они являются продуктами обмена веществ, протекающего внутри клетки, и представляют собой различные белки, жиры и углеводы.

Отличия

При схожем клеточном составе строение растений и животных все же имеет принципиальные отличия.

В таблице приведены главные различия между двумя царствами живой природы.

Сравнительная таблица клеток представителей флоры и фауны
Свойства и основные компонентыРастенияЖивотные
Строение органеллМембранное
ЯдроОкруглой формы, несет в себе наследственную информацию
ДелениеЧерез митоз
ОрганоидыБольшинство компонентов идентично
Клеточная стенкаПрочная стенка из целлюлозы и пектинаОтсутствует, мембрана состоит из фосфолипидов
ПластидыБлагодаря хлоропластам осуществляется процесс фотосинтезаНе содержит
ЦентриолиНетПредставлены структурами из белка, образуют клеточный центр
Тип питанияСинтез питательных веществ из неорганических соединений (автотрофный)Использование органических веществ, взятых из окружающей среды (гетеротрофный)
Энергетический синтезС помощью митохондрий и хлоропластовТолько с помощью митохондрий
МетаболизмПреобладает создание новых высокомолекулярных соединенийВ основном распад сложных веществ на более простые
ВключенияПитательные вещества (крахмал), солиГликоген, белки, липиды, углеводы, соли
РесничкиОчень редкоЕсть

Можно сделать вывод, что основные отличия клеточного строения представителей флоры и фауны исходят от их образа жизни. Растения не способны к самостоятельному движению, поэтому они сами синтезируют питательные вещества. В то время как животные добывают себе пищу из окружающей среды.

Тест

1. Найдите задачу, которую не выполняет клеточная мембрана:

  1. синтез клеточной стенки;
  2. избирательная проницаемость;
  3. передача сигналов;
  4. транспорт ионов;
  5. обмен энергии.

2. В каком органоиде происходят процессы дыхания:

  1. ядро;
  2. аппарат Гольджи;
  3. рибосома;
  4. эндоплазматический ретикулум;
  5. митохондрия.

3. Как называется растворимая часть цитоплазмы:

  1. цитозоль;
  2. цитогель;
  3. цитохром;
  4. клеточный сок;
  5. матрикс.

4. В каком органоиде нет собственной ДНК:

  1. хлоропласт;
  2. хромопласт;
  3. диктиосома;
  4. митохондрия;
  5. ядро.

5. Из чего состоит комплекс Гольджи:

  1. макротрубочки;
  2. микротрубочки;
  3. диктиосомы;
  4. микросомы;
  5. полисомы.

6. Какова задача митохондрий:

  1. темновая фаза фотосинтеза;
  2. дыхание;
  3. световая фаза фотосинтеза;
  4. буферная;
  5. сигнальная.

7. Отметьте одномембранный органоид:

  1. рибосома;
  2. диктиосома;
  3. митохондрия;
  4. микротрубочка;
  5. макротрубочка.

8. Что отсутствует в вакуоли:

  1. тонопласт;
  2. пигменты;
  3. клеточный сок;
  4. эндоплазматическая сеть;
  5. аминокислоты.

9. Каковы размеры паренхимной клетки растения:

  1. 5-10 мкм;
  2. 10-50 мкм;
  3. 50-70 мкм;
  4. 70-100 мкм;
  5. 100-120 мкм.

10. Какой компонент присущ только растительной клетке:

  1. микросома;
  2. митохондрия;
  3. пластида;
  4. рибосома;
  5. диктиосома.

В этом видеоролике сравнивается строение клеток растений и животных.

Источник: https://obrazovanie.guru/nauka/biologiya/rastitelnoy-kletki.html

Виды, строение и функции пластид

Какие из пластид выполняют следующие функции фотосинтез

Пластиды – это органоиды, входящие в структуру растительной клетки. Они хорошо видны под микроскопом, содержатся в растениях. Исключение составляют одноклеточные водоросли, бактерии и грибы.

В органеллах содержится генетический код, они способны воспроизводить себе подобных путем синтеза ДНК, РНК, белков. Роль и функции пластид в клетке определяется их строением. Они способны накапливать питательные вещества, выступать в роли депо. Отдельные виды пластид выполняют функцию фотосинтеза под воздействием энергии света.

Виды

В зависимости от погодных условий, фазы роста в клетках растений находится до трех типов пластид. Они представлены в таблице.

Название пластидОкраскаВ какой части растенияФункцииЧто содержат
Лейкопластыбесцветныепрозрачныеподземная частьзапасник питательных веществКрахмалБелкиЖирыСахараферменты
Хлоропластызеленыестебель, листва, незрелый плодфотосинтез питательных веществхлорофилл
Хромопластыоттенки:желтогооранжевогокрасноголепестки бутонаплодыкорнеплодылистья в период листопадапривлечениеопылителейраспространителей семенного материалаКаротиноидыантоцианксантофиллбелкижирыкрахмалсахараферменты

Среди этих видов пластид нет четких разделений. Они схожи по строению, способны к трансформации:

  • лейкопласты под воздействием света перерождаются в хлоропласты;
  • хлоропласты становятся хромопластами под воздействием погодных факторов (длины светового дня, температуры);
  • в лабораторных условиях хромопласты вновь зеленеют, становятся хлоропластами;
  • хлоропласты преобразуются в лейкопласты (листья отпускают корни в воде).

Строение пластид

Размер органоидов небольшой, от 3 до 10 микрон. Обычно они имеют круглую или овальную форму, выпуклые сверху, снизу.

Большинство имеют две мембраны:

  • внешняя (оболочная):
  • внутренняя (погруженная в стромы).

У некоторых высокоорганизованных растений в строении пластид до четырех мембранных перегородок. За счет мембран формируются:

  • тилакоиды – своеобразные отсеки различного строения;
  • граны – столбчатые или цепочные скопления тилакоидов;
  • ламелы – тилакоиды удлиненной формы.

Строма – вязкое содержимое, схожее в строении пластид.

Хлоропласты

Зеленые органоиды по строению встречаются различной формы, выделяют:

  • овальные;
  • спиралевидные;
  • лопастные;
  • эллипсоидные.

Важный компонент стромы – хлорофилл, необходимый для фотосинтеза.

В сложных пластидах элементы строения: белки, жиры, пигменты, ДНК, РНК.

Хромопласты

Двояковыпуклые, имеют различное строение:

  • трубчатое;
  • сферическое;
  • кубическую;
  • кристаллообразную.

Хромопласты в структуре содержат зерна крахмала. В них полностью разрушен зеленый пигмент, сохраняются другие питательные компоненты хлоропласта.

Лейкопласты

По строению и составу стромы подразделяются на:

  • амилопласты – запасники крахмала, при необходимости они трансформируются в моносахара;
  • элайопласты (липидопласты) они содержат жиры;
  • протеинопласты – кладовые белка.

По форме бывают в виде овала или эллипса.

Функции пластид

Первоначально формируются хлоропласты и лейкопласты. Роль этих пластид – фотосинтез, производство веществ, входящих в состав растительных клеток. Под воздействием света происходит четкое деление по виду органоидов и их функции.

В клетках высокоорганизованных видов растений содержится разное число органоидов. Их бывает 10, иногда количество достигает 200 единиц. В период похолоданий в листьях начинается синтез определенных пигментов. За счет этого строение органоида меняется.

Концентрация, состав красителя в плодах растений зависит от ДНК-кода. Цветные пигменты становятся видны после разрушения хлорофилла. Он боится низких температур. Растение готовится к зимнему периоду. Роль хромопластов – привлекающая и накопительная. Жиры, ферменты, белки, изначально содержащиеся в лейкопластах, накапливаются в процессе роста и спелости.

Значение хлоропластов

Эти органоиды отвечают функцию фотосинтеза, развитие клеток. Они ступенчато синтезируют глюкозу из двуокиси азота и воды. Реакция протекает с выделением кислорода. Процесс происходит за счет хлорофилла – по компонентному составу это углеводород. Высвобождая электрон под воздействием света, он меняет функцию, становится восстановителем.

Функции хромопластов

В процессе пучкования структура органоидов меняется. В хромопластах образуются пластоглобулы – скопления питательных веществ. Изменяются, разрушаются мембраны, клетка уплотняется. Внутреннее строение влияет на функции пласта: окраска становится более привлекательной, яркой за счет роста концентрации пигмента из-за разрушения мембранного строения органоида.

Роль лейкопластов

Функции подземной части растения зависят от разновидности лейкопласта. В зависимости от ДНК-кода, структура пластов изменяется. Функции клетки меняются, это зависит от компонентного состава – количества жиров, белков, сахаров, крахмала формирующего плода. По форме в основном круглые, реже овальные. Это обусловлено строением клетки эукариотического вида.

Пигменты пластид

В структуру клеточных органоидов входят три группы пигментов:

  • хролофилл – магний-порфириновые белковые комплексы хромопротеидов, придающие листьям, стволу зеленую окраску;
  • каротиноид – красящий пигмент, схожий с ретинолом (витамин А), в зависимости от концентрации обретают оранжевую или красноватую окраску;
  • ксантофилл по сути – окисленный каротин, содержится вместе с р-каротином, имеет такие же функции;
  • фикобилинпротеиды по компонентной структуре схожи с желчными пигметно-белковыми соединениями. К ним относятся: синие фикоцианины, придающие окраску плодам; красно-бордовые фикоэритрины.

Происхождение пластид

По одной гипотезе они возникли из цианобактерий. Позже возникла теория природного симбиогенеза бактерий, в состав которых входит хлорофилл, и пластидообразных микроорганизмов. Так объясняли появление митохондрий от эукариот.

Внимание ученые уделяли пигментному строению растительных клеток, позже ушли от этой версии. Появилась гипотеза возникновения пластид Archaeplastidae от зеленой водоросли и цианобактерии. Позже, благодаря симбиозу, зародились цветные простейшие водоросли. Они схожи по строению пластидами клеток:

  • содержится хлорофилл;
  • обнаружены пигментные включения;
  • мембранная структура.

Какого цвета могут быть пластиды?

Если рассматривать растение целиком, выделяется три цветовых гаммы:

  • желтые, оранжевые, красные пластиды расположены в цветках, плодах, корнеплодах, реже – листьях, стволе;
  • интенсивность окраски зависит от концентрации пигмента каратиноида;
  • зеленые органоиды – хлоропласты, они участвуют в процессе фотосинтеза; способны трансформироваться в хромопласты различной окраски или бесцветные лейкопласты.

Цвет пластид взаимосвязан с их функциональностью. Какого цвета будет органоид цветка, плода, корнеплода, зависит от модели ДНК. Информация воспроизводится в период роста растения.

Пигментация цветка привлекает внимание насекомых, участвующих в медосборе, происходит опыление. Яркий окрас плодов служит сигналом созревания семян, косточек для животных. Они распространяют семенной материал по обширной территории.

Источник: https://appteka.ru/entsiklopediya/vidy-stroenie-i-funkcii-plastid

Что такое фотосинтез? История открытия процесса, фазы фотосинтеза и его значение

Какие из пластид выполняют следующие функции фотосинтез

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Но еще 300-400 лет назад ответ на вопрос «откуда растения берут питательные вещества для строительства своих клеток?» занимал умы ученых во всем мире.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

После ван Гельмонта различные ученые повторили его опыт, и сложилась так называемая «водная теория питания растений».

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла.

К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха.

И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа.

Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками.

А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке.

В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности.

Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света.

И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Биология. 6 класс. Рабочая тетрадь № 1.

Рабочая тетрадь разработана к учебнику «Биология. 6 класс» (авт. И.Н. Пономарева, О.А. Корнилова, В.С. Кучменко), входящему в систему «Алгоритм успеха».

Содержит проблемные и тестовые задания, позволяющие учителю организовывать дифференцированную практическую работу шестиклассников, формировать основные биологические понятия, эффективно осуществлять контроль знаний, привлекая учащихся к самооценке учебной деятельности.

Купить

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е.

растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

Подробнее о «великой кислородной революции» можно прочитать в учебнике «Биология 10-11 классы» под редакцией А.А. Каменского на портале LECTA.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Слово фотосинтез состоит из двух частей: фото — «свет» и синтез — «соединение», «создание». Если подходить к определению упрощенно, то фотосинтез — это превращение энергии света в энергию сложных химических связей органических веществ при участии фотосинтетических пигментов. У зеленых растений фотосинтез происходит в хлоропластах.

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

6СО2 + 6Н2О → С6Н12О6 + 6О2

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света.

Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е.

для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Н2О → Н+ + ОН-

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

4ОН → О2 + 2Н2О

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

У некоторых растений фотосинтез идет по упрощенному варианту, который называется «циклическое фосфорилирование» и разбирается этот процесс в учебнике «Биология 10-11 классы» под редакцией А. А. Каменского на портале LECTA.

Темновая фаза фотосинтеза

Темновая фаза фотосинтеза — совокупность ферментативных реакций, которые происходят в строме хлоропласта. Результатом таких реакций является восстановление поглощенного СО2 при помощи НАДФН+ и АТФ из световой фазы, а еще – синтез сложных органических веществ.

В настоящее время учеными открыто три различных варианта реакций, протекающих в темновую фазу фотосинтеза.

В зависимости от метаболизма, СО2 растения делят на:

  1. С3-растения — большинство сельскохозяйственных культур, произрастающих в умеренном климате, у которых в результате реакций СО2 превращается в фосфоглицериновую кислоту.
  2. С4-растения — растения тропиков и субтропиков, наиболее живучие сорняки. У этих растений в результате реакций СО2 превращается в оксалоацетат.
  3. САМ-растения — особый тип С4-фотосинтеза у растений, испытывающих дефицит влаги.

Более подробно остановимся на реакциях С3-фотосинтеза, присущих большинству растений и носящих название цикл Калвина.

Мелвин Калвин, американский химик, в 1961 году за определение последовательности реакций при усвоении СО2 был удостоен Нобелевской премии в области химии.

В ходе реакций цикла образуется глюкоза. Чтобы получилась всего лишь одну молекулу глюкозы, последовательные реакции цикла Кальвина одна за другой происходят целых шесть раз и на ее построение тратится шесть молекул СО2, восемнадцать молекул АТФ, двенадцать НАДФН+ и двадцать четыре протона.

В ходе дальнейших исследований с меченым радиоактивным углеродом было установлено, что у некоторых тропических и субтропических растений синтез углеводов идет другим путем. И в 1966 году австралийские ученые М. Хетч и К. Слэк описали С4-фотосинтез, который в их честь называется циклом Хетча-Слэка.

Главное отличие этих путей фотосинтеза в том, что у С3-растений процесс фотосинтеза протекает лишь в клетках мезофилла, а у С4-растений как в клетках мезофилла, так и в клетках обкладки сосудистых пучков.

На первый взгляд, увеличение количества реакций может показаться лишенным смысла. Однако в природе не существует ничего бессмысленного или излишнего.

И путь С4-фотосинтеза — эволюционное приспособление растений к более сухому и жаркому климату.

Произрастание в условиях ограниченного водоснабжения привело к снижению транспирации для уменьшения потерь воды, что в свою очередь привело к дефициту диоксида углерода и необходимости его концентрации в клетках обкладки.

Также существует еще один уникальный механизм фотосинтеза, характерный для суккулентов. Он носит название САМ(crassulaceae acid metabolism)— «путь фотосинтеза». Химические реакции напоминают путь метаболизма С4, однако здесь химические реакции разделены не в пространстве, а во времени. Диоксид углерода накапливается в темное время суток.

Протекание фотосинтетических реакций в таком варианте позволяет растениям осуществлять процесс фотосинтеза в условиях значительного дефицита влаги. Считается, что данный путь фотосинтеза сформировался самым последним в ходе эволюции.

Изучая пути фотосинтеза, Вы могли заметить, что в ходе эволюции вырабатываются уникальные приспособительные механизмы к различным условиям существования: от засушливых пустынь до морских глубин.

Тайны живой природы помогут открыть электронные учебники по биологии на портале LECTA.

#ADVERTISING_INSERT#

Источник: https://rosuchebnik.ru/material/fotosintez/

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: