К какому типу волн относятся звуковые волны

Все типы волн

К какому типу волн относятся звуковые волны

Современный мир полон волн, они находятся в нашей повседневной жизни, мы можем обнаружить звуковые волны – в музыке, механические – в колебании струн,  электромагнитные волны в электричестве  и при свете.

Галилео. Эксперимент. Резонанс от волны

Типы волн

  • Итак, что же такое волны? Они не имеют ни цвета, ни запаха, ни формы. Волны, скорее, представляют собой процесс или некое состояние, которые мы можем описать математически и отнести к каким-либо физическим явлениям.
  • Зато волны обладают свойствами,  и одним из них является способность передавать энергию из одной точки в другую, подобно любому передвигающемуся объекту.  С этим свойством мы, так же, можем столкнуться в повседневной жизни. Например, при шторме, сила морской волны настолько велика, что способна переместить камень весом в тонну, при сжигании угля, мы пользуемся продуктом сгорания, а солнечные батареи способны трансформировать одну десятую солнечной энергии в электрическую.
  • Ещё одним свойством волны является линейность. Она проявляется в способности колебаний одной волны не влиять на колебания другой, а проходить параллельно. Например, при разговоре двух людей, звуковые волны не отражаются, а, как бы, накладываются, друг на друга.

Волны – это фундаментальное понятие в физике, на котором основываются многие явления и процессы в природе и быту. Ещё Леонардо да Винчи писал в пятнадцатом столетии о волнах: «Импульс гораздо быстрее воды, потому что многочисленны случаи, когда волна бежит от точки возникновения, а вода не двигается с места…»

Модели бегущих и стоячих волн

Бегущие волны

Волны, подчиняющиеся синусоидальному закону. Характеристиками таких волн являются скорость, период и длина волны.

Скорость распространения волны характеризует перемещение фаз в пространстве и зависит, сколько не от частоты, а от среды, в которой протекает волна.

Впервые скорость распространения волны в воде была выведена в 1828 году, в Швейцарии. Опыт был проведен следующим образом:  ночью, в спокойную и тихую погоду, на большом расстоянии в пруду размещались две лодки.

На одной из них человек зажигал порох, а под водой ударял в колокол, другой человек, находящийся во второй лодке, замерял разницу во времени между звуком и вспышкой света.

Скорость распространения волны под водой составляет 1040 м/сек, в то время, как в воздухе эта величина 330 м/сек.

Бегущие волны на воде

Стоячие волны

Бегущие волны на воде

Стоячие волны

Стоячие волны представляют собой сумму подающей и отраженной волны. Для образования таких видов волн, необходимо, чтобы интенсивность падающей и отраженной волны была одинакова.

В идеальном случае, в стоячей волне переноса энергии не осуществляется. Но, так как идеальной модели в мире  не существует, то перенос всё же осуществляется.

Примером стоячей волны может служить пластмассовая трубка изогнутая синусоидально, через которую протянут шнур. Перемещая трубку горизонтально,  имитируется бегущая волна с некоторой скоростью. Далее, вращают трубку вокруг оси, получая синфазное изменение амплитуды.

Звуковые волны ( звуки музыки ) – Наука 2.0

Звуковые волны

С помощью звуков, человек получает большее количество информации. Человеческое ухо способно воспринимать звуки частотой от 20 до 20000 Гц. Распространение звуков осуществляется не только в воздухе, но и в других средах. Под водой, например, отчетливо различимы звуки мотора лодки, а «слухачи» прислушивались к звукам, издаваемые противником.

С помощью звуковых волн, человек так же осуществляет общение, поэтому учение о звуке представляет собой большой раздел, который именуется акустикой. Для того, чтобы звук лучше воспринимался органами слуха, он так же должен обладать соответствующей интенсивностью, или, проще говоря, громкостью. Наиболее оптимальный диапазон для человека составляет 1000-4000 Гц.

Звуковые волны

Музыка играет в нашей жизни огромное значение. Её звучание является гармоничным. Тогда в чем секрет приятного звучания того или иного звука? Дело в том, что чистый звук обладает определенным количеством колебаний, звуки, не обладающие оным, являются раздражающими, то есть обычным шумом.

В 1780-е годы немецкий музыкант и физик Эрнст Хланди предложил оригинальный способ измерения звуковых волн. Он с помощью звука вызвал вибрацию тонкой металлической пластинки с порошком на поверхности, и нашел, что порошок собирается в различные рисунки за счет интерференции вибраций. Затем он вывел формулы для вычисления свойств звука, исходя из рисунков, которые получились.

Впервые звук удалось записать американскому изобретателю Томасу Алва Эдисону с помощью фонографа в 1877 году. Эта система функционировала с помощью давления звуковых волн, которое двигало иголку вверх-вниз, а та выцарапывала углубления на куске оловянной фольги, намотанной на вращающий цилиндр.

Фонограф Эдисона пользовался огромным успехом, но имел и недостатки. Например, запись могла производиться лишь единожды.

Электромагнитные волны

Изучение электромагнитных волн имеет огромное значение, и это явление оказало воздействие на все сферы жизни человека.

Впервые электромагнитные волны были обнаружены Г. Герцем (1857-1894) при проведении им классических опытов. Для возбуждения электромагнитных волн, был применен искровой генератор. Колебания он смог обнаружить с помощью резонатора, наблюдая через лупу за возникновением мелких искр.

Шкала электромагнитных волн 1

Шкала электромагнитных волн 2

Одним из самых выдающихся применений передачи электричества  является создание в 1837 году телеграфного устройства американскими изобретателями Сэмюэлом Морзе и Альфредом Вэйлом.

Так же они подарили жизнь азбуке Морзе – системе кодировки, представляющей собой электрические сигналы, в виде «точек» и «тире», передаваемых по проводу. Далее этот код переводился в слова.

Азбука Морзе стала использоваться в военной инфраструктуре США в конце 19-го века и далее Европа и Америка соединились  трансатлантическим кабелем.

Электромагнитные волны

Электромагнитный спектр

Радиоволны

Появление радиоволн значительно изменило жизнь общества, обеспечивая бесперебойную связь и передачу информации без использования телефонных проводов и кабелей.

В 1988 г. Генрих Герц стал первым ученым, кто смог генерировать радиоволны. Он создал «дипольную антенну», в которой для генерирования радиоволн используются.  высокочастотные колебания зарядов в длинном проводе, возбуждающиеся при внезапном разряде через искровой промежуток.

Вторая такая же антенна находилась в удалении от первой, и когда в её промежутке возникала искра, было ясно, что она создана электромагнитной волной.

Появлением радио, кстати говоря, человечество обязано Николе Тесла, который создал антенны, способные передавать радиосигналы высокой частоты на большие расстояния (1890-е).

Электромагнитный спектр – это «континуум» излучаемых волн, с потенциально бесконечным диапазоном. Этот спектр представляет собой бесконечное количество волн различной длины. По мере уменьшения длины волны, увеличивается частота и проникающая способность волны. Однако скорость распространения в вакууме всех волн одинакова.

Микроволны – являются радиоволнами с самой короткой длиной. От 1 см до 100 мкм, широко используются в быту, например в микроволновых печах.

Инфракрасные лучи – можно обнаружить в любых нагретых телах. Это и есть тепло. Прямое изображение в инфракрасном свете стало возможно в 50-х годах 20-го века, когда были изобретены детекторы, чувствительные к длинам волн. Они способны превращать инфракрасное излучение в видимое, а так же отображать тепловые зоны.

Ультрафиолетовые – коротковолновое излучение. Так как фотоны этого излучения являются энергичными, то они являются опасными для живых организмов. Многие цветы окрашены ультрафиолетовым светом. Эта адаптация способствует опылению, привлекая к себе насекомых, способных различать ультрафиолетовое излучение.

Рентгеновские лучи – эти лучи несут большое количество энергии, и так же, являются опасными для живых клеток.

Заключение

Казалось бы, невидимая, не имеющая ни запаха, ни материального представления, волна способна стать инструментом для многих изобретений, она может принимать форму, приобретать свойства и признаки. Открытие волн, а так же их применение, сыграло колоссальную роль в науке и технике. Важно, что открытие волн послужило «ступенькой» для дальнейшего развития прогресса.

Источник: https://www.13min.ru/nauka/vse-tipy-voln/

Механические волны

К какому типу волн относятся звуковые волны

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: механические волны, длина волны, звук.

Механические волны – это процесс распространения в пространстве колебаний частиц упругой среды (твёрдой, жидкой или газообразной).

Наличие у среды упругих свойств является необходимым условием распространения волн: деформация, возникающая в каком-либо месте, благодаря взаимодействию соседних частиц последовательно передаётся от одной точки среды к другой. Различным типам деформаций будут соответствовать разные типы волн.

Продольные и поперечные волны

Волна называется продольной, если частицы среды колеблются параллельно направлению распространения волны. Продольная волна состоит из чередующихся деформаций растяжения и сжатия. На рис.

1 показана продольная волна, представляющая собой колебания плоских слоёв среды; направление, вдоль которого колеблются слои, совпадает с направлением распространения волны (т. е.

перпендикулярно слоям).

Рис. 1. Продольная волна

Волна называется поперечной, если частицы среды колеблются перпендикулярно направлению распространения волны. Поперечная волна вызывается деформациями сдвига одного слоя среды относительно другого. На рис. 2 каждый слой колеблется вдоль самого себя, а волна идёт перпендикулярно слоям.

Рис. 2. Поперечная волна

Продольные волны могут распространяться в твёрдых телах, жидкостях и газах: во всех этих средах возникает упругая реакция на сжатие, в результате которой появятся бегущие друг за другом сжатия и разрежения среды.

Однако жидкости и газы, в отличие от твёрдых тел, не обладают упругостью по отношению к сдвигу слоёв. Поэтому поперечные волны могут распространяться в твёрдых телах, но не внутри жидкостей и газов*.

Важно отметить, что частицы среды при прохождении волны совершают колебания вблизи неизменных положений равновесия, т. е. в среднем остаются на своих местах. Волна, таким образом, осуществляет
перенос энергии, не сопровождающийся переносом вещества.

Наиболее просты для изучения гармонические волны. Они вызываются внешним воздействием на среду, меняющимся по гармоническому закону. При распространении гармонической волны частицы среды совершают гармонические колебания с частотой, равной частоте внешнего воздействия. Гармоническими волнами мы в дальнейшем и ограничимся.

Рассмотрим процесс распространения волны более подробно. Допустим, что некоторая частица среды (частица ) начала совершать колебания с периодом . Действуя на соседнюю частицу она потянет её за собой. Частица в свою очередь, потянет за собой частицу и т. д. Так возникнет волна, в которой все частицы будут совершать колебания с периодом .

Однако частицы имеют массу, т. е. обладают инертностью. На изменение их скорости требуется некоторое время. Следовательно, частица в своём движении будет несколько отставать от частицы , частица будет отставать от частицы и т. д. Когда частица пустя время завершит первое колебание и начнёт второе, своё первое колебание начнёт частица , находящаяся от частицы на некотором расстоянии .

Итак, за время, равное периоду колебаний частиц, возмущение среды распространяется на расстояние . Это расстояние называется длиной волны. Колебания частицы будут идентичны колебаниям частицы колебания следующей частицы будут идентичны колебаниям частицы и т.

д. Колебания как бы воспроизводят себя на расстоянии можно назвать пространственным периодом колебаний; наряду с временным периодом она является важнейшей характеристикой волнового процесса.

В продольной волне длина волны равна расстоянию между соседними сжатиями или разрежениями (рис. 1). В поперечной – расстоянию между соседними горбами или впадинами (рис. 2).

Вообще, длина волны равна расстоянию (вдоль направления распространения волны) между двумя ближайшими частицами среды, колеблющимися одинаково (т. е. с разностью фаз, равной ).

Скоростью распространения волны называется отношение длины волны к периоду колебаний частиц среды:

.

Частотой волны называется частота колебаний частиц:

.

Отсюда получаем связь скорости волны, длины волны и частоты:

. (1)

На поверхности жидкости могут существовать волны особого типа, похожие на поперечные – так называемые поверхностные волны. Они возникают под действием силы тяжести и силы поверхностного натяжения.

Звук

Звуковыми волнами в широком смысле называются всякие волны, распространяющиеся в упругой среде. В узком смысле звуком называют звуковые волны в диапазоне частот от 16 Гц до 20 кГц, воспринимаемые человеческим ухом. Ниже этого диапазона лежит область инфразвука, выше – область ультразвука.

К основным характеристикам звука относятся громкость и высота.
Громкость звука определяется амплитудой колебаний давления в звуковой волне и измеряется в специальных единицах -децибелах (дБ). Так, громкость 0 дБ является порогом слышимости, 10 дБ – тиканье часов, 50 дБ – обычный разговор, 80 дБ – крик, 130 дБ – верхняя граница слышимости (так называемый болевой порог).

Тон – это звук, который издаёт тело, совершающее гармонические колебания (например, камертон или струна). Высота тона определяется частотой этих колебаний: чем выше частота, тем выше нам кажется звук. Так, натягивая струну, мы увеличиваем частоту её колебаний и, соответственно, высоту звука.

Скорость звука в разных средах различна: чем более упругой является среда, тем быстрее в ней распространяется звук. В жидкостях скорость звука больше, чем в газах, а в твёрдых телах – больше, чем в жидкостях.
Например, скорость звука в воздухе при равна примерно 340 м/с (её удобно запомнить как “треть километра в секунду”)*.

В воде звук распространяется со скоростью около 1500 м/с, а в стали – около 5000 м/с.
Заметим, что частота звука от данного источника во всех средах одна и та же: частицы среды совершают вынужденные колебания с частотой источника звука.

Согласно формуле (1) заключаем тогда, что при переходе из одной среды в другую наряду со скоростью звука изменяется длина звуковой волны.

Если хочешь найти расстояние до грозовых туч в километрах, посчитай, через сколько секунд после молнии придёт гром, и раздели полученное число на три.

Источник: https://ege-study.ru/ru/ege/materialy/fizika/mexanicheskie-volny/

Что такое звук и какими характеристиками обладают звуковые волны?

К какому типу волн относятся звуковые волны

Раскаты грома, музыка, шум прибоя, человеческая речь и все остальное, что мы слышим – это звук. А что такое “звук”?

Источник изображения: pixabay.com

В действительности все, что мы привыкли считаем звуком – это всего лишь одна из разновидностей колебаний (воздуха), которые могут воспринимать наш мозг и органы слуха.

Какая природа у звука

Все звуки, распространяемые в воздухе, представляют собой вибрации звуковой волны. Она возникает посредством колебания объекта и расходится от её источника во всех направлениях.

Колеблющийся объект сжимает молекулы в окружающей среде, а затем создаёт разреженную атмосферу, заставляя молекулы отталкиваться друг от друга всё дальше и дальше.

Таким образом, изменения в давлении воздуха распространяются от объекта, сами молекулы остаются в неизменной для себя позиции.

Воздействие звуковых волн на барабанную перепонку. Источник изображения:prd.go.

th

По мере того, как звуковая волна распространяется в пространстве, она отражается от объектов, встречающихся на её пути, создавая изменения в окружающем воздухе.

Когда эти изменения, достигая вашего уха, воздействуют на барабанную перепонку, нервные окончания подают сигнал в мозг, и вы воспринимаете эти колебания как звук.

Основные характеристики звуковой волны

Самой простой формой звуковой волны является синусоида. Синусоидные волны в чистом виде редко встречаются в природе, однако именно с них следует начинать изучение физики звука, так как любые звуки можно разложить на комбинацию синусоидных волн.

Синусоида чётко демонстрирует три основных физических критерия звука – частоту, амплитуду и фазу.

Частота

Чем реже частота колебаний, тем звук ниже, Источник изображения:ReasonGuide.Ru

Частота – это величина, характеризующая количество колебаний в секунду. Она измеряется в количестве периодов колебания либо в герцах (ГЦ).

Человеческое ухо может воспринимать звук в диапазоне от 20 Гц (низкочастотные) и до 20 КГц (высокочастотные).

Звуки, находящиеся выше данного диапазона называется ультразвуком, а ниже – инфразвуком, и человеческими органами слуха не воспринимаются.

Амплитуда

Чем больше амплитуда звуковой волны, тем громче звук.

Понятие амплитуды (или интенсивности) звуковой волны имеет отношение к силе звука, которую человеческие органы слуха воспринимают как объём или громкость звука.

Люди могут воспринимать достаточно широкий спектр громкости звука: от капающего крана в тихой квартире, и до музыки, звучащей на концерте.

Для измерения громкости используются фонометры (показатели в децибелах), в которых используется логарифмическая шкала чтобы сделать измерения более удобными.

Фаза звуковой волны

Фазы звуковой волны. Источник изображения: Muz-Flame.ru

Используется для того, чтобы описать свойства двух звуковых волн. Если две волны имеют одинаковую амплитуду и частотность, то говорят, что две звуковые волны находятся в фазе.

Фаза измеряется в диапазоне от 0 до 360, где 0 – это значение, показывающее, что две звуковые волны синхронны (в фазе), а 180 – значение, означающее противоположность волн друг к другу (находятся в противофазе). Когда две звуковые волны находятся в фазе, то два звука накладываются и сигналы усиливают друг друга.

При совмещении двух сигналов, не совпадающих по амплитуде, из-за разницы давления идёт подавление сигналов, что приводит к нулевому результату, то есть звук исчезает. Этот феномен известен как “подавление фазы”.

При совмещении двух одинаковых аудио сигналов – подавление фазы может стать серьёзной проблемой, так же огромной неприятностью является совмещение оригинальной звуковой волны с волной, отражённой от поверхностей в акустической комнате. Например, когда совмещают левый и правый каналы стерео микшера, чтобы получить гармоничную запись, сигнал может страдать от подавления фаз.

Что такое децибел?

В децибелах измеряется уровень звукового давления или электрического напряжения. Это такая единица, которая показывает коэффициент отношения двух разных величин друг к другу. Бел (названный в честь американского ученого Александра Белла) является десятичным логарифмом, отражающим соотношение двух разных сигналов друг к другу.

Это означает, что для каждого последующего бела в шкале, принимаемый сигнал в десять раз мощнее. Например, звуковое давление громкого звука в миллиарды раз выше, чем у тихого. Для того чтобы отображать такие большие величины, стали использовать относительную величину децибел (дБ) – при этом 1.000.000.000 – это 109, или просто 9.

Принятие физиками акустиками данной величины позволило сделать работу с огромными числами удобнее.

Шкала громкости различных звуков. Источник изображения: Nauet.

ru

На практике получается так, что бел является слишком большой единицей для измерения уровня звука, поэтому вместо него стали использовать децибел, что составляет одну десятую от бела.

Нельзя сказать, что применение децибелов вместо белов – это как использование, скажем, сантиметров вместо метров для обозначения размера обуви, белы и децибелы — относительные величины.

Из выше сказанного понятно, что уровень звука принято измерять в децибелах. Некоторые эталоны уровня звука используются в акустике на протяжении многих лет, начиная со времён изобретения телефона, и по сей день.

Большинство этих эталонов сложно применить относительно современного оборудования, они используются только для устаревших единиц техники.

На сегодняшний день на оборудовании в студиях звукозаписи и вещания используется такая единица, как дБu (децибел относительно уровня 0,775 В), а в бытовой аппаратуре – дБВ (децибел, отсчитываемый относительно уровня 1 В). В цифровой аудио аппаратуре для измерения мощности звука применяется дБFS (децибел полной шкалы).

дБм – “м” обозначает милливатты (мВт), данная единица измерения используется для обозначения электрической мощности. Следует отличать мощность от электрического напряжения, хотя эти два понятия тесно связаны друг с другом. Единицу измерения дБм начали использовать ещё на заре внедрения телефонных коммуникаций, на сегодняшний день её тоже используют в профессиональной аппаратуре.

дБu — в данном случае измеряется напряжение (вместо мощности) относительно эталонного нулевого уровня, за эталонный уровень принято считать 0,75 вольт.

В работе с современной профессиональной аудио аппаратуре дБu заменён на дБм.

В качестве единицы измерения в сфере звукотехники было удобнее использовать дБu раньше, когда для оценки уровня сигнала было важнее считать электрическую мощность, а не его напряжение.

дБВ – в основе данной единицы измерения так же лежит эталонный нулевой уровень (как и в случае с дБu), однако за эталонный уровень принимают 1 В, что является более удобным, чем цифра 0,775 В. Данная единица измерения звука часто используется для бытовой и полу профессиональной аудио аппаратуры.

дБFS – данная оценка уровня сигнала широко используется в цифровой звукотехнике и сильно отличается от указанных выше единиц измерения.

FS (full scale) – полная шкала, которая используется из-за того, что, в отличие от аналогового звукового сигнала, которое имеет оптимальное напряжение, весь диапазон цифровых значений одинаково приемлем при работе с цифровым сигналом.

0 дБFS – это максимально возможный уровень цифрового звукового сигнала, который можно записать без искажения. У аналоговых стандартов измерения таких, как дБu и дБВ, после уровня 0 дБFS нет запаса по динамическому диапазону.

Если Вам понравилась статья ,поставьте лайкиподпишитесь на каналНАУЧПОП.Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник: https://zen.yandex.ru/media/popsci/chto-takoe-zvuk-i-kakimi-harakteristikami-obladaiut-zvukovye-volny-5bfee53b9f25000ae1f79429

Звуковые волны – свойства, характеристики и примеры применения в физике

К какому типу волн относятся звуковые волны

В общем случае звуковые волны физика рассматривает как распространение возмущений давления в упругих средах. Человеческое ухо улавливает аномалию, воспринимая звук.

Изучающая свойства явления наука называется акустикой. От греческого ἀκούω (слышать). Имеются в виду небольшие изменения параметров в отличие от физики ударных волн.

Источник звука

Под источником звука понимают вещь, спровоцировавшую волну. Например, динамик или музыкальный инструмент.

В громкоговорителе для извлечения шума используется подвижная мембрана. В духовых инструментах – движение воздуха по внутренним ходам различной геометрии.

Из струнных звук извлекают при помощи трения смычка или при помощи щипков, ударов. Человек выдает речь, вокал, при помощи ых связок.

Скорость звуковой волны

Скорость распространения акустической волны является важной физической характеристикой среды или материала, поскольку со скоростью звука передаются любые возмущения.

Величина зависит от упругих свойств среды. Например, от давления, температуры. Для атмосферного воздуха важна влажность.

В общем случае определяется отношением модуля всестороннего сжатия и номинальной плотностью.

Для практических целей замеряется опытным путем. В жидкостях звук распространяется быстрее, чем в газах.

Громкость

Зависит от перемещаемой волной энергии. Замеряют в Вт/м2. Но интенсивность принято измерять в децибелах.

Существует масса приложений для компьютеров, смартфонов. Специалисты вооружаются специализированными устройствами.

Бел – десятичный логарифм отношения текущего уровня интенсивности в фоновому, пороговому. Осталось умножить на 10 (поскольку децибел).

Вот примеры уровня шума для разных источников.

Высота и тембр звука

Считается, что человеческое ухо воспринимает с разным успехом частоты диапазона 20…20 000 Гц. Оптимальными для слуха является интервал 1 000…5 000 Гц.

Высота определяется частотой. В связанной с музыкальными инструментами акустике измеряется также в мелах.

В музыкальных колонках в зависимости от частот звук может разделяться на полосы (НЧ, СЧ, ВЧ). На каждый громкоговоритель поступает соответственно отфильтрованный звук.

Рассуждения корректны, если имеем гармоничные колебания (синусоида), определенный тон. Примером такого звучания может служить камертон. Реальные инструменты дают дополнительные гармоники (обертона), образующие тембр.

Так выглядит звук от разных источников на одной ноте.

Звуковые явления

Звук обладает ярко выраженными волновыми свойствами:

1. Интерференция или сложение. В зависимости от условий волны могут взаимно усиливаться или ослабляться.

При проведении крупных концертных мероприятий учитывается возможные «деформации» звука в некоторых участках помещения. Эффект связан с обильным отражением (рефракцией) волн от стен, потолка, пола. Особенно коварно поведение линейных массивов.

Рота бойцов разрушит мост, идя по нему «в ногу». Конструкции не выдерживает наступающего резонанса.

2. Дифракция. Огибание препятствия, если длина волны существенно больше.

3.Замеренная частота источника увеличивается в процессе сближения с последним (эффект Доплера).

Применение звуковых волн

Помимо ценности общения друг с другом, звук дает возможность наслаждаться музыкой и обогащать свое представление об окружающем мире. Кроме слышимого спектра существуют инфра- и ультразвук. Ниже и выше границ слышимости соответственно.

УЗИ (ультразвуковое исследование) позволяет «увидеть» внутренности пациента без скальпеля и небезопасного рентгеновского аппарата. Эхолокатор поставляет морякам информацию о глубинах и рельефе дна. Офицер-гидроакустик обнаружит спрятавшуюся подводную лодку. Характер отражения ультразвука поможет обнаружить скрытый дефект в ответственной детали.

Слабо затухающий в средах инфразвук предупредит о стихийном бедствии. Регистрирующие приборы обнаруживают и локализуют сотрясения почвы и скальных пород. Это важно для изучения и предсказания землетрясений. Таким же образом обнаруживаются запрещенные испытания ядерного оружия. Предупрежден – значит вооружен.

Источник: https://nauka.club/fizika/zvukovye-volny.html

Звук

К какому типу волн относятся звуковые волны

Перед тем, как приступить к рассмотрению темы, дадим определение такому явлению, как звук.

Определение 1

Звук или звуковые волны – это волны, которые способно воспринять человеческое ухо.

При этом звуковые частоты имеют диапазон: примерно от 20 Гц до 20 кГц.

Определение 2

Инфразвук – звуковые волны, имеющие частоту менее 20 Гц.

Ультразвук – волны звука, имеющие частоту более 20 кГц.

Волнам звукового диапазона свойственно распространяться как в газе, так и в жидкости (продольные волны), и в твердом теле (продольные и поперечные волны). Особенно интересно для науки заниматься изучением распространения звуковых волн в газообразной среде, что по сути есть среда нашего обитания.

Определение 3

Акустика – это направление физики, занимающееся изучением звуковых явлений.

Когда звук получает распространение в газе, атомы и молекулы испытывают колебания вдоль направления распространения волны, следствием чего становится изменение локальной плотности ρ и давления p.

Замечание 1

Звуковые волны в газе зачастую называют волнами плотности или волнами давления.

В случае простых гармонических звуковых волн, получающих распространение вдоль оси OX, изменение давления p(x, t) имеет зависимость от координаты x и времени t, которая записывается так:

p(x,t)=p0cosωt±kx.

В аргументе косинуса мы видим два противоположных знака, что имеет отношение к двум направлениям распространения волны. Запишем выражение, которое покажет соотношение таких величин, как круговая частота ω, волновое число k, длина волны λ, скорость звука υ (соотношение будет таким же, как применимо для поперечных волн в струне или резиновом жгуте): 

υ=λT=ωk; k=2πλ; ω=2πf=2πT.

Одной из ключевых характеристик звука является скорость распространения.

Определение 4

Скорость распространения – величина, описывающая звуковую волну, задаваемая инертными и упругими свойствами среды и определяемая для продольных волн в любой однородной среде при помощи формулы:

υ=Bρ.

В указанной формуле B является модулем всестороннего сжатия, ρ – средней плотностью среды.

Формула Лапласа

Первые попытки рассчитать значение скорости звука предпринял Ньютон, предположив равенство упругости воздуха атмосферному давлению pатм.

В таком случае значение скорости звука в воздушной среде – менее 300 м/с, в то время как истинная скорость звука при нормальных условиях (температура 0 °С и давление 1 атм) равна 331,5 м/с, а скорость звука при температуре 20 °С и давлении 1 атм составит 343 м/с.

Лишь по прошествии более ста лет было показано, почему предположение Ньютона не выполняется. Французский физик П.

Лаплас указал, что ньютоновское видение равносильно предположению о быстром выравнивании температуры между областями разрежения и сжатия, и невыполнение его связано с плохой теплопроводностью воздуха и малым периодом колебаний в звуковой волне.

В действительности между областями разрежения и сжатия газа появляется разность температур, существенным образом влияющая на упругие свойства. Лаплас, в свою очередь, выдвинул предположение, что сжатие и разрежение газа в звуковой волне происходят в соответствии с адиабатическим законом: в отсутствии влияния теплопроводности. В 1816 году физик вывел формулу, предназначенную для расчета скорости звуковой волны в воздухе и получившей название формулы Лапласа.

Определение 5

Формула Лапласа для определения скорости звука имеет запись:

υ=γpρ.

Где p является значением среднего давления в газе, ρ – средней плотности, а γ есть некоторая константа, находящаяся в зависимости от свойств газа.

В нормальных условиях скорость звука, рассчитанная по формуле Лапласа, равна υ=332 м/с.

В термодинамике имеется доказательство, что константа γ представляет собой отношение теплоемкостей при постоянном давлении Cp и постоянном объеме CV .

Формула Лапласа может быть записана несколько иначе, если использовать уравнение состояния идеального газа. Таким образом, окончательный вид формулы для определения скорости звука будет такой:

υ=γRTM.

В данной формуле T – абсолютная температура, M – молярная масса,
R=8,314 Дж/моль·К – универсальная газовая постоянная. Скорость звука находится в сильной зависимости от свойств газа: скорость звука тем больше, чем легче газ, в котором звуковая волна получает распространение.

Для наглядности приведем некоторые примеры.

Пример 1

Когда звук распространяется в воздушной среде (M=29·10–3 кг/моль) при нормальных условиях: υ=331,5 м/с;

Пример 2

Когда звук распространяется в гелии (M=4·10–3 кг/моль): υ=970 м/с;

Пример 3

Когда звук распространяется в водороде (M=2·10–3 кг/моль): υ=1270 м/с.

В жидкостях и твердых телах скорость звуковых волн еще больше. В воде, например, υ=1480 м/с (при 20 °С), в стали υ=5–6 км/с.

Характеристики звуковых волн

Помимо скорости распространения звук имеет и другие характеристики, связанные с восприятием его человеческими органами слуха.

Громкость звука

Рассуждая о том, как человеческое ухо воспринимает звук, в первую очередь мы говорим об уровне громкости, который зависит от потока энергии или интенсивности звуковой волны. А то, как воздействует звуковая волна на барабанную перепонку, зависит от звукового давления.

Определение 6

Звуковое давление – это амплитудаp0 колебаний давления в волне

Природа отлично потрудилась, создавая такое совершенное устройство, как человеческое ухо: оно способно воспринимать звуки в обширнейшем диапазоне интенсивностей. Мы имеем возможность слышать как слабый писк комара, так и грохот вулкана. 

Определение 7

Порог слышимости – минимальное значение величины звукового давления, при котором звук этой частоты еще воспринимается человеческим ухом.

Болевой порог – это верхняя граница диапазона слышимости человека; та величина звукового давления, при котором звук вызывает в человеческом ухе ощущение боли.

Порог слышимости представляет собой значение p0 около 10–10 атм, т. е.

 10–5 Па: такой слабый звук характеризуется колебанием молекул воздуха в волне звука с амплитудой всего лишь 10–7 см! Болевой же порог соответствует значению p0 порядка 10–4 атм или 10 Па. Т.е.

, человеческое ухо способно к восприятию волн, в которых звуковое давление изменяется в миллион раз. Поскольку интенсивность звука пропорциональна квадрату звукового давления, диапазон интенсивностей оказывается порядка 1012!

Человеческое ухо, восприимчивое к звукам такого огромного диапазона интенсивности, допустимо сравнить с прибором, которым возможно измерить как диаметр атома, так и размеры футбольного поля.

Замечание 2

Для общей информированности заметим, что обычным разговорам людей в комнате соответствует интенсивность звука, примерно в 106 раз превышающая порог слышимости, а интенсивность звука на рок-концерте находится очень близко к болевому порогу.

Высота звука

Высота звуковой волны – еще одна характеристика звука, влияющая на слуховое восприятие. Человеческие ухо воспринимает колебания в гармонической звуковой волне как музыкальный тон.

Определение 8

Высокий тон – это звуки с колебаниями высокой частоты.

Низкий тон – это звуки с колебаниями низкой частоты.

Опиши задание

Звуки, которые издают музыкальные инструменты, а также звуки голоса человека значимо отличаются друг от друга по высоте тона и по диапазону частот.

К примеру, диапазон наиболее низкого мужского голоса – баса – находится в пределах примерно от
80 до 400 Гц, а диапазон высокого женского голоса – сопрано – от 250 до 1050 Гц.

Определение 9

Октава – это диапазон колебаний звука, который соответствует изменению частоты колебаний в 2 раза.

Скрипка, к примеру, звучит в диапазоне примерно трех с половиной октав (196–2340 Гц),
а пианино – семи с лишним октав (27,5–4186 Гц).

Говоря о частоте звука, который извлекается при помощи струн любого струнного музыкального инструмента, будем иметь в виду частоту f1 основного тона. Однако колебания струн содержат также гармоники, частоты fn которых отвечают соотношению: 

fn=nf1, (n=1, 2, 3,…).

Таким образом, звучащая струна способна излучать целый спектр волн с кратными частотами. Амплитуды An этих волн имеют зависимость от способа возбуждения струны, будь то смычок или молоточек. Эти амплитуды необходимы для придания музыкальной окраски звуку (тембру).

Аналогичный процесс мы наблюдаем, когда звучат духовые музыкальные инструменте. Трубы духовых инструментов служат акустическими резонаторами – акустическими колебательными системами, имеющими способность возбуждаться (резонировать) от звуковых волн определенных частот.

Определенные же условия способствуют возникновению внутри трубы стоячей звуковой волны. Рисунок 2.7.1 демонстрирует несколько видов стоячих волн (мод) в органной трубе, закрытой с одного конца и открытой с другого.

Звучание духовых инструментов, так же, как и струнных, состоит из целого спектра волн с кратными частотами.

Рисунок 2.7.1. Стоячие волны в трубе органа (закрыта лишь с одной стороны). Стрелки указывают направления движения частиц воздуха за один полупериод колебаний.

Музыкальные инструменты необходимо периодически настраивать.

Определение 10

Камертон – устройство для настройки музыкальных инструментов, состоящее из настроенных в резонанс деревянного акустического резонатора и соединенной с ним металлической вилки.

Удар молоточка по вилке вызывает возбуждение всей системы камертона с последующим звучанием чистого музыкального тона.

Гортань певца – по сути тоже акустический резонатор. Рисунок 2.7.2 демонстрирует спектры звуковых волн, издаваемых камертоном, струной пианино и низким женским голосом (альтом), звучащими на одной и той же ноте.

Рисунок 2.7.2. Относительные интенсивности гармоник в спектре волну звука при звучании камертона (1), пианино (2) и низкого женского голоса (альт) (3) на ноте «ля» контроктавы (f1=220 Гц). По оси ординат отложены относительные интенсивности II0 .

Звуковые волны, чьи частотные спектры показаны на рисунке 2.7.2, имеют одну и ту же высоту, но различные тембры.

Биения

Разберем также такое явление, как биения.

Определение 11

Биение – это явление, возникающее, когда две гармонические волны с близкими, но все же имеющими отличия частотами, накладываются друг на друга.

Биения сопровождают, к примеру, одновременное звучание двух струн, имеющих настройки практически одинаковой частоты. Человеческий орган слуха воспринимает биения как гармонический тон с громкостью, периодически изменяющейся во времени. Запишем выражения, показывающие закономерность изменения звуковых давлений p1 и p2, которые осуществляют воздействие на ухо: 

p1=A0cos ω1t и p2=A0cos ω2t.

Для удобства примем, что амплитуды колебаний звуковых давлений являются одинаковыми и равны p0=A00.

Согласно принципу суперпозиции полное давление, которое вызывается обеими волнами в каждый момент времени, есть совокупность звуковых давлений, задаваемых каждой волной в тот же момент времени. Запишем выражение, показывающее суммарное воздействие волн, используя тригонометрические преобразования:

p=p1+p2=2A0cosω1-ω22tcosω1+ω22t=2A0cos12∆ωtcosωсрt,

где ∆ω=ω1-ω2, аωср=ω1+ω22.

Рисунок 2.7.3(1) отображает, каким образом давления p1 и p2 зависимы от времени t. В момент времени t=0 оба колебания находятся в фазе, и их амплитуды суммируются.

Поскольку частоты колебаний имеют хоть и небольшие, но отличия, через некоторое время t1 колебания войдут в противофазу. В этот момент суммарная амплитуда станет равна нулю: колебания взаимно «погасятся».

К моменту времени t2=2t1 колебания вновь окажутся в фазе и т. д. (рисунок 2.7.3(2)).

Определение 12

Период биений Тб – это минимальное значение интервала между двумя моментами времени, которым соответствуют максимальная и минимальная амплитуда колебаний.

Формула, которая определяет медленно изменяющуюся амплитуду A результирующего колебания, имеет запись:

A=2A0cos12∆ωt.

Период Тб изменения амплитуды равен 2πΔω. Мы можем это продемонстрировать, приняв следующее предположение: периоды колебаний давлений в звуковых волнах T1 и T2 являются такими, что T1ω2). За период биений Тб наблюдается некоторое число n полных циклов колебаний первой волны и (n–1) циклов колебаний второй волны: 

Tб=nT1=(n-1)T2.

Отсюда следует:

Tб=T1T2T2-T1=2πω1-ω2=2π∆ω или fб=1Tб=1T1-1T2=f1-f2=∆f.

fб есть частота биений, определяемая как разность частот Δf двух звуковых волн, которые воспринимаются ухом одновременно.

Органы слуха человека способны к восприятию звуковых биений до частот 5–10 Гц. Прослушивание биений – это важный элемент техники настройки музыкальных инструментов.

Рисунок 2.7.3. Биения, возникающие, когда накладываются две звуковые волны с близкими частотами.

Рисунок 2.7.4. Модель явления биений.

Источник: https://Zaochnik.com/spravochnik/fizika/volny/zvuk/

Звуковые волны, виды, длина волны и скорость звука

К какому типу волн относятся звуковые волны

Сегодня мы продолжим изучать звук и разберёмся что такое звуковые волны, какие бывают их виды, что такое длина волны и какая скорость у звука.

Виды звуковых волн

Звуковые волны делятся на продольные. Это когда направление движения частиц совпадает с направлением распространения энергии механических колебаний в упругой среде. И на поперечные. Это когда направление движения частиц перпендикулярно распространению возмущения.

В газах (к ним относится и воздух) распространяются только продольные волны, в твердых могут быть оба вида.

Формулы

Зависимость скорости звуковой волны от свойств среды, где она распространяется, рассматривается по формуле:

E — коэффициент упругости среды, определяет силу взаимодействия частиц друг с другом; p = m/V (кг/м³) — плотность среды. У твердых тел упругость больше, чем у жидкости и газа. Поэтому соотношение скоростей звука будет таким:

Скорость звука в газах может быть представлена следующей формулой:

γ = cp/сv — отношение удельной теплоёмкости при постоянном давлении к удельной теплоёмкости при постоянном объёме.

P атм — атмосферное давление, которое связано с температурой газообразной среды.

Главное, что нужно понять из этой формулы, это то, что в газообразной среде скорость звука сильно зависит от температуры (чем горячее, тем быстрее двигаются молекулы, имеет большую энергию и быстрее передают механическое возбуждение)

В воздухе скорость звука (при нормальном атмосферном давлении) приближенно можно представить так:

C = (331 + 0,6 T °) м/c

T ° — градусы Цельсия.

Например, при температуре 20 °C скорость звука равна 343 м/с

C = (331 + 0,6 × 20) = 343

При 0 °C, скорость звука равна 331 м/с, при — 20 °C = 319 м/с.

Такая зависимость особенно важна для духовых музыкальных инструментов при их настройке. Поэтому их нужно прогревать перед исполнением.

Ещё важно, что связь звуковых колебаний с размерами источника звука, которые не изменяются с температурой, не означают постоянства частоты, так как последняя зависит от скорости звука, растущей с повышением температуры. Струнные в этом случае можно подстроить.

А вот вибрирующий столб во многих духовых инструментах подстроить нельзя. Ведь колебания возникают в воздушной полости инструмента, а их частота зависит от размеров полости и скорости истечения воздушных масс из неё.

Например, у флейты высота звука увеличивается на полтона при повышении температуры на 15 °C.

Если переводить в км/ч, то 343 м/с, это 1235 км/ч. Это довольно быстро для человека или автомобиля. Но мало по сравнению со скоростью света 300 000 км/c.

Заканчивая о скорости звука, отметим, что скорость звука не зависит от частоты. Так как в воздушной среде отсутствует дисперсия — зависимость скорости распространения звука от частоты. Если бы в воздухе была бы дисперсия, мы не смогли бы слушать музыку в зале: все звуки, исполненные одновременно, приходили бы к слушателю в разное время.

Длина волны

Когда происходит одно сжатие и одно разрежение плотности среды происходит один период колебания. Поэтому расстояние между двумя сжатиями или двумя разряжениями звуковой волны и равно длине волны.

Если мы знаем частоту звука (количество волн в секунду), то мы можем вычислить расстояние между соседними соответствующими точками распространяющихся волн.

Допустим звук с известной нам скоростью 340 м/с имеет частоту 340 Гц. При этих параметрах длина волны будет равна 1 метру.

Формула для расчёта длины волны

А формула вычислений такая:

λ — длина волны, c — скорость, f — частота.

Конечно, эти расчеты являются приближенными. Так как мы уже знаем, что скорость звука в воздухе зависит от температуры, давления. Но на практике, чтобы рассчитать толщину звукопоглотителя для ослабления звука определённого диапазона частот или для оценки размера мембраны микрофона, этого вполне достаточно.

Музыкальные ноты имеет определённые частоты, значит и определённую длину волн. Например, у фортепиано верхняя октава создаёт звуки в районе 2 см, а нижняя около 10 м. Но дека фортепиано не очень эффективно генерирует эти звуки, в отличии, например, от органа. Почему?

Вернёмся к нашей руке. Допустим мы всё-таки наделены сверх способностями и можем махать рукой 100 раз в секунду = 100 Гц. Этот источник звука был бы всё равно несовершенен, так как часть воздуха огибала его сбоку.

Чтобы этого не было, источник для таких низких частот должен быть гораздо большего размера (например, дека фортепиано более эффективна, поскольку потери на её краях невелики, а органа ещё эффективнее). Если же вибратор колеблется очень быстро воздух не успевает растекаться по сторонам.

Поэтому для очень высоких частот даже малые поверхности могут быть эффективными излучателями звука.

Спасибо, что читаете New Style Sound. Подписывайтесь и делитесь с друзьями.

Tweet Подписаться Share Share Share Share Share

Источник: https://nssound.ru/o-zvuke-i-zvukovykh-signalakh/zvukovye-volny-vidy-dlina-volny-i-skorost-zvuka/

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: