Источник образования крови

Содержание
  1. Кроветворение: процессы и главные факторы | Научные статьи
  2. Особенности процесса образования клеток крови: теории и факты
  3. Как осуществляется кроветворение: механизмы
  4. В каком месте организма образуется эритропоэтин?
  5. Роль витамина В12 в кроветворении
  6. Роль гормонов и нервной системы в кроветворении
  7. ссылкой:
  8. Кровь
  9. Система крови и ее функции
  10. Функции крови
  11. Кровь — общие сведения
  12. Форменные элементы крови: эритроциты, тромбоциты, лейкоциты
  13. Эритроциты: строение и функции
  14. Лейкоциты: строение и функции
  15. Тромбоциты: строение и функции
  16. Нормы форменных элементов крови
  17. Стволовые клетки: виды, получение и источники, образование клеток
  18. МИКРООКРУЖЕНИЕ СТВОЛОВОЙ КЛЕТКИ
  19. ОДИН В ПОЛЕ НЕ ВОИН
  20. Внутренняя среда организма человека. Группы крови. Переливание крови
  21. Внутренняя среда в организме человека
  22. Состав крови
  23. Эритроциты
  24. Лейкоциты
  25. Лимфоциты
  26. Тромбоциты
  27. Группы крови. Переливание крови

Кроветворение: процессы и главные факторы | Научные статьи

Источник образования крови

Постоянство клеточного состава крови, его обновление осуществляются благодаря взаимосвязи крови и органов, образующих ее элементы (кроветворных).

В костном мозге созревают красные кровяные тельца, зернистые лейкоциты и тромбоциты. Общий вес его у взрослого человека приблизительно составляет 1500 г. Лимфатические узлы, селезенка образуют лимфоциты и моноциты.

Особенности процесса образования клеток крови: теории и факты

Процесс образования клеток крови идет непрерывно в течение всей человеческой жизни, интенсивность его строго соответствует потребностям организма.

По одной из современных теорий следует, что клетки крови человека — эритроциты, лейкоциты и тромбоциты происходят из единой родоначальной материнской клетки, так называемой «стволовой».

Путем ее деления и развития появляются клепки, предопределяющие различные ветви кроветворения: образование эритроцитов, зернистых лейкоцитов (гранулоцитов), незернистых лейкоцитов (агранулоцитов), тромбоцитов.

Порожденная общей «стволовой» клеткой, каждая из этих ветвей имеет и свою собственную родоначальную клетку. В процессе деления и постепенного созревания и преобразования этих костномозговых элементов появляются зрелые клетки, поступающие в кровь.

К чести русской науки следует оказать, что мысль о происхождении всех клеток крови из единого источника принадлежит знаменитому русскому ученому-гистологу А. А. Максимову, создавшему еще в 1900—1914 гг. свою теорию кроветворения. Эти исследования нашли подтверждение и дальнейшее развитие в трудах советских исследователей.

Вместе с тем в некоторыми учеными высказывалась мысль о том, что еще до рождения человека в кроветворных органах предопределен вид каждой кроветворной линии — гранулоцитарной, эритроцитарной, лимфоцитарной. В пользу такой точки зрения приводятся данные биохимических исследований клеток крови и костного мозга.

Так, советские биохимики П. Ф. Сейц и П. С. Луганова обнаружили, что для определенных линий кроветворных элементов характерен определенный вид энергетического обмена.

На основании этих данных они полагали, что и происхождение клеточных форм на каком-то этапе должно быть различным, поскольку характерный тип обмена (как группа крови, резус-фактор), возникший в клетке в начальном периоде ее развития, сохраняется во всех клеточных популяциях (производных данной линии).

Из всего сказанного можно сделать заключение о том, что кровь обладает многообразными функциями, имеющими первостепенное значение для существования организма. Всякое нарушение постоянства состава этой внутренней среды организма чревато далеко идущими последствиями, приводящими к нарушению здоровья человека.

Как осуществляется кроветворение: механизмы

Процессы разрушения красных кровяных шариков и их образования строго сбалансированы. Если организм теряет какое-то количество крови, то не проходит 2—3 недель, как снова восстанавливается исходный уровень числа эритроцитов и концентрации гемоглобина. При этом всегда наблюдается значительное убыстрение образования красных кровяных телец (эритропоэза) в костном мозге.

Не вызывает сомнений факт существования в организме особых механизмов регуляции эритропоэза, хорошо выявляемых тогда, когда под влиянием каких-либо причин резко уменьшается количество эритроцитов и в связи с этим развивается кислородное голодание — гипоксия.

Законно предположить, что уменьшение снабжения организма кислородом автоматически приводит к увеличению продукции красных кровяных телец.

  • Хорошо известно, что у жителей высокогорья, а так же у альпинистов, достигающих больших высот, число эритроцитов заметно повышается по сравнению с исходной нормой.
  • И наоборот, если в барокамере создать повышенное давление кислорода, то через некоторое время можно отметить постепенное затухание, «вялость» красного кроветворения, вплоть до полного его прекращения.

Возникает вопрос о механизме «эритроцитостимулирующего» действия кислородного голодания. Большим количеством исследований установлено, что этот фактор убыстряет кроветворение через посредство особого вещества, стимулирующего эрицропоэз и получившего название «эритропоэтин».

В 1906 г. два французских исследователя — Карно и Дефляндер — обнаружили, что сыворотка крови, взятая у кроликов через 20 часов после массивной кровопотери и введенная другому здоровому кролику, способствовала у последнего приросту эритроцитов на 2—3 млн. в 1 мм3 крови, а также увеличению количества гемоглобина.

Последующие эксперименты показали, что кислородная недостаточность любого происхождения способна повышать эритростимулирующие свойства кровяной сыворотки.

Наиболее убедительные доказательства существования в организме стимулятора красного кроветворения были представлены в опытах на искусственно сращенных между собой (наподобие сиамских близнецов) крысах.

Этот интересный опыт выглядел так: одна из крыс дышала газовой смесью, содержащей пониженное количество кислорода, а ее партнер — воздухом с нормальным содержанием кислорода. И оказалось, что у обоих животных в костном мозге происходило одинаковое разрастание клеток «красного ряда», а в периферической крови — значительное увеличение эритроцитов.

Объяснить это можно следующим образом: у крысы под влиянием кислородного голодания образуется вещество эритростимулирующего действия, т. е. эритропоэтин, который переходит с кровью через сращенные кровеносные сосуды в организм партнера и вызывает у него активизацию кроветворения.

В каком месте организма образуется эритропоэтин?

Многочисленные клинические наблюдения и особенно опыты на животных представили убедительные аргументы в пользу почечного происхождения эритропоэтина.

Было показано, что двустороннее удаление почек ликвидирует способность организма образовывать эритропоэтин в ответ на кровопотерю или на недостачу кислорода по другой причине. Последующая же подсадка почки, взятой от другого животного, вызывала очень быстрое восстановление эритропоэза в костном мозге.

Роль витамина В12 в кроветворении

В кроветворении принимают участие различные витамины, среди которых особая роль принадлежит витамину В12, содержащему кобальт.

Источником витамина В12 служат продукты животного происхождения; в растительных продуктах он отсутствует. Благодаря этому витамину поддерживается нормальный процесс созревания эритроцитов у здорового человека.

В сутки взрослому человеку необходимо 3—5 мг витамина В12. Как показали современные исследования, витамин В12, попавший в организм с пищей, всасывается в кишечнике лишь при соединении его с особым белком — гастромукопротеином (который иначе называется «внутренний фактор»).

Гастромукопротеин вырабатывается у человека железами желудка и обладает способностью образовывать с витамином В12 комплексное соединение. Оказалось, что этот белок предохраняет витамин от пожирания микроорганизмами, заселяющими кишечник. Таким образом, он выступает в роли «проводника» витамина В12 и спасает его от разрушающего действия микробов.

Всосавшийся витамин накапливается в печени и затем используется для целей кроветворения по мере необходимости.

Установлено, что витамин B12 принимает активное участие в образовании соединений, являющихся составными частями нуклеиновых кислот, — тех самых кислот, коими так богаты ядра клеток и которые определяют основные наследственные признаки организма.

В случае нехватки витамина B12 задерживается синтез нуклеиновых кислот, в результате чего неизбежно нарушается деление постоянно размножающихся кроветворных клеток. Тогда в костном мозге вместо нормальных эритробластов появляются огромные, медленно созревающие клетки, получившие название мегалобластов (от греческого слова «мегалос» — огромный).

На этой почве происходит развитие тяжелого малокровия — злокачественная анемия.

Роль гормонов и нервной системы в кроветворении

Вся сложная, необыкновенно подвижная система крови находится под постоянным влиянием эндокринной и нервной систем. Гормоны (от греческого слова «гормао» — возбуждаю), выделяемые эндокринными органами (железами внутренней секреции), попадают непосредственно в кровь.

Через нее гормоны осуществляют связь одних органов и систем с другими. Они оказывают регулирующее влияние на различные функции организма, в том числе и на кроветворение. Так воздействуют гормоны, вырабатываемые передней долей гипофиза, щитовидной железой, корой надпочечников, половыми железами.

Значительное влияние на процессы кроветворения и распределения элементов крови в сосудах и депо оказывает и, нервная система.

ссылкой:

Источник: https://unclinic.ru/reguljacija-krovetvorenija-mehanizmy-i-vazhnye-faktory/

Кровь

Источник образования крови

Нормальная жизнедеятельность клеток организма возможна только при условии постоянства его внутренней среды. Истинной внутренней средой организма является межклеточная (интерстициальная) жидкость, которая непосредственно контактирует с клетками.

Однако постоянство межклеточной жидкости во многом определяется составом крови и лимфы, поэтому в широком понимании внутренней среды в ее состав включают: межклеточную жидкость, кровь и лимфу, спиномозговую, суставную и плевральную жидкость.

Между кровью, межклеточной жидкостью и лимфой осуществляется постоянный обмен, направленный на обеспечение непрерывного поступления к клеткам необходимых веществ и удаление оттуда продуктов их жизнедеятельности.

Постоянство химического состава и физико-химических свойств внутренней среды называют гомеостазом.

Гомеостаз — это динамическое постоянство внутренней среды, который характеризуется множеством относительно постоянных количественных показателей, получивших название физиологических, или биологических, констант. Эти константы обеспечивают оптимальные (наилучшие) условия жизнедеятельности клеток организма, а с другой — отражают его нормальное состояние.

Важнейшим компонентом внутренней среды организма является кровь.

Система крови и ее функции

Представление о крови как системе создал Г.Ф. Ланг в 1939 г. В эту систему он включил четыре части:

  • периферическая кровь, циркулирующая по сосудам;
  • органы кроветворения (красный костный мозг, лимфатические узлы и селезенка);
  • органы кроверазрушения;
  • реулирующий нейрогуморальный аппарат.

Функции крови

Транспортная функция — заключается в транспорте различных веществ (энергии и информации, в них заключенных) и тепла в пределах организма. Кровью осуществляются также транспорт гормонов, других сигнальных молекул и биологически активных веществ.

Дыхательная функция — переносит дыхательные газы — кислород (02) и углекислый газ (СО?) — как в физически растворенном, так и химически связанном виде. Кислород доставляется от легких к потребляющим его клеткам органов и тканей, а углекислый газ — наоборот от клеток к легким.

Питательная функция — кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, витаминами, минеральными веществами, водой; переносит также питательные вещества от органов, где они всасываются или депонируются, к месту их потребления.

Выделительная (экскреторная) функция — при биологическом окислении питательных веществ, в клетках образуются, кроме СО2, другие конечные продукты обмена (мочевина, мочевая кислота), которые транспортируются кровью к выделительным органам: почкам, легким, потовым железам, кишечнику.

Терморегулирующая функция — благодаря своей высокой теплоемкости кровь обеспечивает перенос тепла и его перераспределение в организме. Кровью переносится около 70% тепла, образующегося во внутренних органах в кожу и легкие, что обеспечивает рассеяние ими тепла в окружающую среду.

В организме имеются механизмы, которые обеспечивают быстрое сужение сосудов кожи при понижении температуры окружающего воздуха и расширение сосудов при повышении.

Это приводит к уменьшению или увеличению потери тепла, так как плазма состоит на 90-92% из воды и обладает вследствие этого высокой теплопроводностью и удельной теплоемкостью.

Гомеостатическая функция — кровь участвует в водно-солевом обмене в организме, поддерживает стабильность ряда констант гомеостаза — рН, осмотического давления и др.; обеспечение водно-солевого обмена между кровью и тканями — в артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляров возвращаются в кровь.

Защитная функция заключается прежде всего в обеспечении иммунных реакций, а также создании кровяных и тканевых барьеров против чужеродных веществ, микроорганизмов, дефектных клеток собственного организма.

Вторым проявлением защитной функции крови являетcя ее участие в поддержании своего жидкого агрегатного состояния (текучести), а также остановке кровотечения при повреждении стенок сосудов и восстановлении их проходимости после репарации дефектов.

Осуществление креаторных связей. Макромолекулы, переносимые плазмой и форменными элементами крови, осуществляют межклеточную передачу информации, обеспечивающую регуляцию внутриклеточных процессов синтеза белков, сохранение степени дифференцированности клеток, восстановление и поддержание структуры тканей.

Кровь — общие сведения

Кровь состоит из жидкой части — плазмы и взвешенных в ней клеток (форменных элементов): эритроцитов (красных кровяных телец), лейкоцитов (белых кровяных телец) и тромбоцитов (кровяных пластинок).

Между плазмой и форменными элементами крови существуют определенные объемные соотношения. Установлено, что на долю форменных элементов приходится 40-45%, крови, а на долю плазмы — 55-60%.

Общее количество крови в организме взрослого человека в норме составляет 6-8 % массы тела, т.е. примерно 4,5-6 л. Объем циркулирующей крови относительно постоянен, несмотря на непрерывное всасывание воды из желудка и кишечника. Это объясняется строгим балансом между поступлением и выделением воды из организма.

Если вязкость воды принять за единицу, то вязкость плазмы крови равна 1,7-2,2, а вязкость цельной крови — около 5.

Вязкость крови обусловлена наличием белков и особенно эритроцитов, которые при своем движении преодолевают силы внешнего и внутреннего трения. Вязкость увеличивается при сгущении крови, т.е.

потере воды (например, при поносах или обильном потении), а также при возрастании количества эритроцитов в крови.

Плазма крови содержит 90-92% воды и 8-10% сухого вещества, главным образом, белков и солей.

В плазме находится ряд белков, отличающихся по своим свойствам и функциональному значению, — альбумины (около 4,5%), глобулины (2-3%) и фибриноген (0,2-0,4%).

Общее количество белка в плазме крови человека составляет 7-8 %. Остальная часть плотного остатка плазмы приходится на долю других органических соединений и минеральных солей.

Наряду с ними в крови находятся продукты распада белков и нуклеиновых кислот (мочевина, креатин, креатинин, мочевая кислота, подлежащие выведению из организма). Половина общего количества небелкового азота в плазме — так называемого остаточного азота — приходится на долю мочевины.

Лекция врача-нутрициолога Аркадия Бибикова

Источник: https://happyfamily-nsp.com/krov/

Форменные элементы крови: эритроциты, тромбоциты, лейкоциты

Источник образования крови

Форменные элементы крови обеспечивают ее многофункциональность

Форменные элементы обеспечивают многоплановость функций крови. Они создают защиту организма от болезнетворных микробов, транспортируют кислород и полезные вещества, очищают кровеносную систему и забирают продукты распада, восстанавливают повреждённые ткани и препятствуют потере крови, останавливая кровотечения.

Все элементы зарождаются в костном мозге из единой стволовой клетки. По мере развития клетки дифференцируются и трансформируются в один из видов форменных элементов: эритроциты, тромбоциты и лейкоциты.

В совокупности составляют 40 — 48% от объёма крови, остальные 52 — 60% приходятся на плазму. Соотношение общего числа форменных элементов именуют гематокритом.

Иногда гематокрит высчитывают по количеству только эритроцитов, так как они являются основными клеточными элементами крови.

Эритроциты: строение и функции

Красные кровяные тельца — эритроциты

Эритроциты (RBC) представляют собой безъядерные клетки двояковогнутой округлой формы. Диаметр развитой клетки составляет около 7 — 8 мкм, толщина — 2,2 мкм по краям и 1 мкм в центральной части. Форма и строение клетки обуславливают оптимальное выполнение эритроцитами своих функций.

Вогнутая форма увеличивает поверхность эритроцита в 1,7 раз по сравнению с шаровидной клеткой, а также позволяет перемещаться по тончайшим капиллярам — проникая в узкие сосуды, эритроциты способны вытягиваться и скручиваться.

Ядро утрачивается по мере взросления клетки, освобождая место для молекул гемоглобина.

Эритроциты слаженно передвигаются по кровеносному руслу, выстраиваясь в виде столбиков, концы которых соединены друг с другом, образуя кольца, что облегчает движение крови.

Каждая клетка содержит около 300 миллионов молекул гемоглобина, которые обратимо связываются с кислородом, чтобы затем отдать его тканям различных органов. Гемоглобин является сложным белком, содержащим 574 аминокислоты и состоящим из 4 субъединиц.

Каждая из них включает гем — комплекс железа, который обеспечивает красный цвет клетки, а совокупность эритроцитов придаёт красный цвет крови.

функция эритроцитов заключается в транспортировке кислорода и выведению из тканей углекислого газа. Снижение числа кровяных телец, изменение их формы и гибкости вследствие различных заболеваний приводят к нехватке гемоглобина и кислородному голоданию всех органов.

Эритроциты принимают участие в иммунных реакциях и поддержании кислотно-щелочного равновесия, транспортируют питательные вещества.

Также эти клетки несут на своей поверхности около 400 антигенов, первостепенное значение имеют антигены систем групп крови, то есть антигены II, III, IX групп крови и резус-фактор.

Лейкоциты: строение и функции

Белые кровяные тельца — лейкоциты

Лейкоциты (WBC) — это группа клеток, каждая из которых выполняет специализированную защитную функцию. Лейкоциты содержат ядра, в состав клеток входят гидролитические ферменты, система синтеза белка, биологически активные соединения и другие органоиды.

Лейкоциты обладают способностью мигрировать сквозь сосудистую стенку, устремляясь к чужеродным частицам, чтобы захватить их и уничтожить. Разрушение вредоносных клеток осуществляется лейкоцитами при помощи процесса фагоцитоза — поглощения и переваривания.

Лейкоциты включают в себя 5 групп защитных клеток.

1. Базофилы (BAS). Составляют всего 1% от числа всех лейкоцитов. Это клетки округлой формы, их диаметр составляет примерно 12 — 15 мкм.

Базофилы содержат гранулы неправильной формы, в состав которых входят гистамин, гепарин, серотонин, простагландин и другие вещества.

При необходимости базофильные лейкоциты высвобождают содержимое своих гранул, участвуя в аллергических реакциях, блокировании ядов, защите сосудов от образования тромбов, привлечении других клеток-помощников в очаг воспаления.

2. Эозинофилы (EOS). Их число в составе лейкоцитов также невелико — от 1 до 4%. Клетки обладают округлой формой, ядро образует 2 сегмента, соединённые перемычкой. Диаметр составляет около 12 — 17 мкм.

Гранулы эозинофилов содержат коллагеназу, эластазу, пероксидазу, кислую фосфатазу, простагландины, щелочной протеин и т.д.

Эозинофилы способны прикрепляться к паразитам и вводить ферменты из своих гранул в цитоплазму вредоносных организмов, растворяя их оболочку.

Агранулоцитарные лейкоциты — лимфоциты

3. Лимфоциты (LYM). Составляют около 30% от лейкоцитов, являются главными иммунными клетками. Лимфоциты — это форменные элементы сферической формы, большинство из них представляют собой малые клетки с тёмным ядром, диаметром 5 — 7 мкм. Крупные лимфоциты обладают бобовидным ядром, их диаметр превышает 10 мкм. Эти клетки функционально подразделяются на виды:

  • В-лимфоциты. Формируют антитела против вредоносных агентов.
  • Т-киллеры уничтожают болезнетворные клетки (паразитарные, вирусные, опухолевые).
  • Т-хелперы помогают в процессах пролиферации и дифференцировки лимфоцитов, способствуют выработке антител.
  • Т-супрессоры приостанавливают работу Т-хелперов, когда это необходимо.
  • Т-памяти «записывают» информацию о проникших в организм микробах, чтобы при новой атаке вредных микроорганизмов направить против них соответствующие антитела.
  • NK-лимфоциты разрушают аномальные клетки.

Палочкоядерный нейтрофил

4. Нейтрофилы (NEU). Самая многочисленная группа лейкоцитов, составляет до 75% от числа защитных клеток. Диаметр равен примерно 12 — 15 мкм, циркулируют в крови в виде двух подвидов:

  • Палочкоядерные. Являются незрелыми элементами, их ядра схожи на палочки, которые затем разделятся на сегменты, образуя следующий подвид.
  • Сегментоядерные. Их ядра сегментированы, содержат обычно 3 доли, связанные хроматиновыми нитями.

Нейтрофилы активно поглощают бактерии, грибы и некоторые вирусы. Они первыми устремляются к источнику инфекции, захватывают своими ложноножками патогенные частицы и помещают внутрь цитоплазмы, выделяя содержимое своих гранул. Их гранулы содержат коллагеназу, аминопептидазу, катионные белки, кислые гидролазы, лактоферрин.

Переварив вредоносные микроорганизмы, нейтрофилы обычно погибают, высвобождая в этот момент ряд веществ, которые способствуют угнетению оставшихся бактерий и грибов, а также усиливают процесс воспаления, что становится сигналом для других клеток иммунитета.

Масса погибших нейтрофилов, перемешавшись с клеточным детритом, представляет собой гной.

5. Моноциты (MON). Гранулы у данных лейкоцитов отсутствуют, их ядра могут быть представлены в виде овала, подковы, боба, а диаметр равен 12 — 20 мкм. Составляют около 4 — 10% от числа иммунных клеток.

Являются активными фагоцитами, способными поглощать крупные микроорганизмы, при этом после процесса переваривания обычно не погибают. Они остаются в месте воспаления и подчищают его, отделяя здоровые ткани от повреждённых.

Моноциты уничтожают как болезнетворные микробы, так и погибшие лейкоциты, способствуя последующей регенерации пострадавших тканей.

Тромбоциты: строение и функции

Красные кровяные пластинки — эритроциты

Тромбоциты (PLT) представляют собой пластинки диаметром 2 — 11 мкм. Эти клетки не содержат ядер, обладают округлой либо овальной формой. Но их форма меняется при возникновении кровотечения. Как только повреждается сосуд, тромбоцит обретает сферическую форму и выпускает ложноножки, при помощи которых он соединяется с иными тромбоцитами и агрегирует к месту повреждения.

Гранулы содержат необходимые для коагуляции элементы: факторы свёртывания, фибриноген, ионы кальция, а также фактор роста. Часть антикоагулянтов и факторов свёртывания могут находиться на поверхности пластинок.

Основная функция состоит в обеспечении целостности кровеносной системы за счёт процесса свёртывания. При повреждении стенки сосуда выделяется коллаген, к волокнам которого прилипают находящиеся рядом тромбоциты. Высвобождая содержимое гранул, тромбоциты запускают цепь реакций, благодаря которым образуется тромб, препятствующий кровопотере.

Помимо участия в системе гемостаза, тромбоциты способствуют регенерации тканей, выделяя из своих гранул факторы роста, при помощи которых происходит стимуляция пролиферации клеток. Ещё одна функция заключается в питании эндотелия сосудов кровеносной системы.

Нормы форменных элементов крови

Нормативные показатели, выраженные в абсолютных значениях.

Форменные элементыНорма
эритроциты4,0 – 5,5*1012/л
лейкоциты4,0 – 9,0*109/л
нейтрофилы палочкоядерные0,04 – 0,3*109/л
нейтрофилы сегментоядерные2,0 – 5,5*109/л
эозинофилы0,02 – 0,3*109/л
базофилы0,02 – 0,06*109/л
лимфоциты1,2 – 3,0*109/л
моноциты0,09 – 0,6*109/л
тромбоциты180 – 320*109/л

Подгруппы лейкоцитов в результатах анализа могут быть представлены в виде соотношения к общему числу лейкоцитов.

ЛейкоцитыСоотношение (%)
нейтрофилы палочкоядерные1 – 6
нейтрофилы сегментоядерные40 – 70
эозинофилы1 – 4
базофилы0,2 – 1
лимфоциты20 – 37
моноциты4 – 10

Источник: https://gidanaliz.ru/fiziologiya/formennye-elementy-krovii.html

Стволовые клетки: виды, получение и источники, образование клеток

Источник образования крови

Наука — океан, открытый как для ладьи, так и для фрегата. Один перевозит по нему слитки золота, другой удит в нем сельдей.

Эдуард Булвер-Литтон

Человеческое тело состоит из сотен типов жизненно важных клеток. Эти клетки отвечают за ежедневную поддержку функций организма: сердцебиение, активность мозга, очистку крови, своевременное обновление клеток кожи. Если у животных клеток есть типовое строение, чем же тогда отличаются, к примеру, клетки сердца и клетки печени?

Медицина торжественно обещает человечеству принципиально новый способ омоложения и избавления от смертельных болезней. И имя панацеи — стволовые клетки. Александр Александрович Максимов (1874-1928) — российско-американский гистолог и эмбриолог. Ввел в науку понятие о стволовых клетках. Что же они собой представляют?

Стволовая клетка — это незрелая клетка, способная к самообновлению и развитию в специализированные клетки организма. Миллиарды клеток растущего организма происходят из одной-единственной клетки — зиготы. Она образуется в результате слияния мужской и женской гамет.

Эта единственная клетка содержит не только генетическую информацию, но и предначертанную заранее схему развития. Оплодотворенная яйцеклетка делится и дает жизнь новым клеткам. На эмбриональном уровне эти молодые клетки пока не имеют специальных функций, ведь у зародыша еще не сформированы органы и ткани.

Это эмбриональные стволовые клетки, геном которых находится в «нулевой точке». В них еще нет клеточной специализации, а значит, из такой «заготовки» могут развиться любые клетки.

Так чем же могут быть полезны стволовые клетки? Во-первых, они восстанавливают поврежденные участки органов и тканей.

Получив сигнал о «неполадке», по кровяному руслу стволовые клетки устремляются к пораженному органу.

Прибыв на место, они прикрепляются к месту разрыва или перелома и превращаются в необходимые клетки: костные, мышечные, печеночные, сердечные и даже нервные. Так происходит процесс регенерации тканей.

Человеческий организм содержит примерно 50 миллиардов стволовых клеток, которые регулярно обновляются. С годами количество живых «кирпичиков» сокращается — их работа увеличивается, а заменить их нечем.

Угасать они начинают уже к 20 годам, а в 70 лет их остается совсем мало. Стволовые клетки пожилых людей не так универсальны. Они еще могут превратиться в кровяные клетки, а в нервные — уже нет.

Ученые научились направлять стволовые клетки в нужное русло.

Стволовые клетки по возможности к трансформации подразделяются на:

  • тотипотентные, способные превращаться в любые клетки организма;
  • плюрипотентные, образуют множество различных видов клеток, но не целый организм;
  • мультипотентные, превращаются только в клетки тех тканей, из которых они были взяты;
  • унипотентные, способны дать начало только одному типу клеток.

Какие же источники стволовых клеток используются в этих целях сегодня? Как правило, для «добычи» универсальных клеток используют костный мозг, пуповинную кровь, эмбрионы, ставшие жертвами абортов, и другие части организма человека.

  • Костный мозг. Человек может стать донором стволовых клеток для самого себя. Особую ценность представляют стромальные стволовые клетки. Они способны «забыть» о своей принадлежности к костному мозгу и трансформироваться в клетки костной ткани, хрящей и жира. Стволовые клетки извлекают из костного мозга, наращивают и вводят обратно в организм. Они направляются к «больному месту».
  • Пуповинная кровь. Кровь из пуповины, собранная после рождения ребенка, очень богата стволовыми клетками. Ее помещают в специальное хранилище — криобанк — и используют в дальнейшем для восстановления практически любой ткани и органа. Американским ученым удалось получить стволовые клетки из человеческой плаценты. Оказалось, что там их количество в 10 раз больше, чем в пуповинной крови. Такие клетки способны преобразовываться в кожные, кровяные, мышечные и нервные.
  • Абортивный материал. Эмбрионы 9-12 недель беременности — источник фетальных стволовых клеток. Существуют юридические и этические аспекты, окутывающие этот способ сбора стволовых клеток ореолом противоречий. Такие клетки могут вызвать отторжение трансплантата. В случае недобросовестности специалистов, не проверивших биологический материал, пациент может быть заражен вирусным гепатитом, СПИДом и цитомегаловирусом.

ИНТЕРЕСНЫЕ ЦИФРЫ

В организме новорожденного младенца на 1 стволовую клетку приходится 10 тысяч других. В возрасте 20-25 лет остается 1 стволовая клетка на 100 тысяч, а в 50 лет — на 500 тысяч.

МИКРООКРУЖЕНИЕ СТВОЛОВОЙ КЛЕТКИ

Термин «ниша стволовой клетки» в 1978 году предложил Р. Скофилд. Так он назвал микроокружение стволовой клетки. Ниша — это связующее звено контроля и регуляции между клеткой и организмом. Ее функции:

  • обеспечение стволовой клетки факторами, необходимыми для ее жизнедеятельности;
  • взаимный контроль и обмен информацией между клетками, координация их действий;
  • координация между различными популяциями клеток, регулирование их ориентации и местоположения.

ОДИН В ПОЛЕ НЕ ВОИН

Несмотря на амбиции, стволовые клетки не справятся с возлагаемыми на них задачами в одиночку. Как в человеческом обществе существует множество профессий, клетки внутри нас тоже трудятся во благо организма.

Костный мозг — кроветворный орган, расположенный в губчатых и трубчатых костях. Его населяют различные виды клеток. Если посмотреть на срез костного мозга в микроскоп, в нем можно увидеть участки кости, в которых представлены клетки костной ткани.

Также обнаруживаются наполненные кровью синусоиды. Рядом с сосудами расположены нервные волокна. Здесь же находятся крупные жировые клетки, количество которых увеличивается с возрастом.

Но так как главной функцией костного мозга является производство крови, его основную массу составляют клетки крови на разных стадиях трансформации. Среди них можно выделить гемопоэтические стволовые клетки (ГСК).

Это примитивные клетки, дающие начало всем клеткам крови, они способны поддерживать постоянное количество на протяжении всей жизни организма.

Уникальным свойством всех стволовых клеток является способность к самообновлению. Так называют симметричное деление с образованием идентичных копий материнской клетки.

Так, гемопоэтическая стволовая клетка может практически бесконечно штамповать собственные копии и не погибать. Часть стволовых клеток находится в состоянии покоя: они неактивны и не участвуют в клеточном цикле.

Но проснувшись, такая стволовая клетка делает важный выбор.

Если клетка решила превратиться в специализированную клетку, она приступает к асимметричному делению. В результате образуется «выбравший свой путь» предшественник.

Каким же образом стволовая клетка решает, оставаться ей незрелой или повзрослеть? И как она выбирает будущую профессию? Важную роль в выборе играет окружение стволовой клетки. В первую очередь, это различные виды клеток, формирующие нишу. Например, одни «соседи» держат клетку в состоянии покоя, в то время как другие стимулируют ее на трансформацию.

Вместе с окружающими клетками на ГСК воздействуют растворимые вещества — цитокины и ростовые факторы.

Часть из них вырабатывается клетками ниши, другие синтезируются в других органах, например в почках и паращитовидной железе. Некоторые вещества продляют состояние покоя клетки, способствуя ее самообновлению.

Другие заставляют задуматься о выборе будущей профессии. Также в регуляции участвует нервная система, передавая сигналы о ситуации в организме.

Выбор профессии — непростой процесс, и огромную роль в нем играют личные предпочтения и склонности. У стволовой клетки богатый и сложный внутренний мир, который представлен транскрипционными факторами. Именно их взаимодействия приводят в конечном итоге к принятию решения.

Источник: https://estestvoznanye.ru/stvolovye-kletki

Внутренняя среда организма человека. Группы крови. Переливание крови

Источник образования крови

Внутренняя среда организма – это совокупность жидкостей(кровь, лимфа, тканева и цереброспинальная), принимающих участие в процессах обмена веществ и поддержания гомеостаза организма.

Выделено 4 группы крови, они различаются между собой по антигенам. Этот признак передается по наследству от родителей к детям. В медицине используют переливание крови при тяжелых заболеваниях.

Процедура имеет свои правила и особенности.

Человеческий организм – это сложная система, внутри которой постоянно проходят обменные процессы. Конечным продуктом обычно является энергия. С пищей помимо энергии в организм поступают витамины. Они разделяются на 2 группы и имеют свои функции.

Внутренняя среда в организме человека

Внутренняя седа организма представлена кровью, лимфой и плазмой. Форменные элементы крови перемещаются с током жидкости по сосудам. Внутренняя среда является постоянной и неизменной, такое состояние называется гомеостазом. Ее основной функцией является обеспечение гуморальной связи органов между собой.

 

Кровь – это важнейшая жидкая составляющая внутренней среды организма. Является соединительной тканью, состоящей из форменных элементов крови и плазмы. Она выполняет следующие функции в организме:

  1. Транспортную – осуществляет транспорт питательных веществ по организму.
  2. Защитная – содержит фагоцитирующие клетки.
  3. Дыхательную – насыщает органы и ткани кислородом.
  4. Терморегуляционную – распределяет тепло по телу.

Интересная информация!В организме человека содержится в среднем 5 л крови. Объём крови зависит от веса и роста. Часть крови циркулирует по органам и тканям, другая депонируется.

Состав крови

Рис. 1. Форменные элементы крови 

Плазма состоит из воды на 90% с неорганическими и органическими веществами. Она составляет 50% от общего объема крови в организме человека. В состав входят:

  • альбумин;
  • глобулин;
  • фибриноген;
  • протромбин.

Кислотность среды в плазме составляет 7,2 – 7,3. Для лабораторных биохимических исследований используют сыворотку. Это плазма, лишенная фибриногена. Получают ее методом центрифугирования и последующего послойного разделения.

Форменные элементы крови выполняют питательную, защитную функцию, также отвечают за свертывание. Их разделяют на группы.

Эритроциты

Красные кровяные тельца, представляют собой двояковогнутые диски. Не содержат ядра, вместо него эритроциты переносят гемоглобин. Содержат двухвалентное железо. В 1 мм3крови содержится 4-5 млн клеток. 

Клетки транспортируют молекулярный кислород, превращаясь в оксигемоглобин, затем отдают тканям кислород, а себе забирают углекислый газ, образуется карбогемоглобин. При отравлениях угарным газом образуется стойкое соединение карбоксигемоглобин, которое нарушает получение кислорода тканями.

Эритроциты образуются в красном костной мозге. Их жизненный цикл составляет 100-120 дней. После чего клетки попадают в печень, селезенку или красный костный мозг, где погибают.

Норма эритроцитов у мужчин составляет 4,5 – 5,5 ×109/л, у женщин 3,8 – 4,5 ×109/л.

Лейкоциты

Белые кровяные тельца. Их разделяют на 6 видов в зависимости от формы ядра. После окраски их дифференцируют по группам:

Сегментоядерные нейтрофилы

Округлая клетка, окрашивается в светло-фиолетовый цвет. Ядро разделено на несколько сегментов, соединённых тонкой перетяжкой.

Палочкоядерные нейтрофилы

Предшествующая форма сегментоядерного нейтрофила. Ядро имеет форму палочки с закругленными концами.

Лимфоциты

Круглая клетка с правильным круглым ядром, которое занимает 90% клетки.

Моноциты

Крупная клетка, цитоплазма окрашивается в светлые оттенки краски, не имеет четких границ. Ядро крупное в форме бабочки.

Базофилы

Цитоплазма имеет зернистость, ядро сегментарное, соединенное перетяжками. Включения крупные, занимают всю площадь клетки.

Эозинофилы

Поверхность клетки покрыта зернистостью яркого оранжевого цвета. Ядро поделено на 2 крупных сегмента, соединенных перетяжкой.

Лейкоциты отвечают частично за иммунитет. Выполняют фагоцитарную функцию, предотвращают попадание инфекции в организм, борются с вирусами. По анализу крови на лейкоциты можно определить наличие заболеваний крови, аллергическую реакцию, воспалительные процессы, возникновение инфекции и других болезней.

Лимфоциты

Один из видов лейкоцитов. Отвечают за выработку организмом антител. Отвечают за иммунную реакцию. Вырабатываются в селезенке, вилочковой железе (тимусе), костном мозге. Вырабатываются на проникновение в организм антигенов.

Тромбоциты

Безъядерные кровяные тельца неправильной формы. Участвуют в процессе свертывания крови, способствуют сокращению гладких мышц. Образуются в красном костном мозге. Жизненный цикл клеток длиться 5-10 дней, затем они попадают в печень и селезенку, где разрушаются.

Признаки

Эритроциты

Лейкоциты

Тромбоциты

Строение и вид

Мелкие безъядерные клетки, имеющие вид двояковогнутого диска. Содержат гемоглобин, перемещаются с током крови

Крупные бесцветные клетки, имеющие ядро и способные двигаться

Мелкие безъядерные пластинки, Содержат белок фибриноген

Количество в 1 мм3

4,5 – 5 млн.

5 – 7 тыс.

400 тыс.

Место образования

Костный мозг

Костный мозг, лимфатические узлы, селезенка

Костный мозг

Место разрушения

Печень, селезенка

Везде

Селезенка

Продолжительность жизни

1 месяц

От нескольких часов до несколько дней

Несколько часов

Функции

Транспортирование СО2 и О2

Уничтожение бактерий, разрушающих клеток

Участвуют в свертывании крови

Группы крови. Переливание крови

В 1901 году ученый из Австрии Карл Ландштейнер выделил три группы крови: I, II, III. Только в 1906 году, было выяснено, что существует четвертая группа крови IV. Ее обнаружил и описал другой ученый Ян Янский. Эти открытия стали началом для разработки системы АВ0.

В 1927 году ученые тщательно изучали эритроциты. На их поверхности были обнаружены антигены. Их назвали M, N, P, p.

В 1940 году на эритроците обнаружили новый антиген. Оказалось, что он отвечает за резус-фактор. Выяснилось, что 85% людей, являются носителями положительного и доминантного антигена.

В организме человека разделяют 4 группы крови. Для обозначения и определения группы крови разработали систему АВ0. Они различаются по антигенам на поверхности эритроцитов. Для определения используют специальные растворы. Если агглютинация с реагентом происходит, значит это не та группа, которая прописана на этикетке. Если склеивания эритроцитов не произошло, значит это та самая группа.

Группа крови

Эритроцитарный агглютиноген

Плазменный агглютинин

I (0)

a, B

II (А)

А

B

III (В)

В

A

IV (АВ)

АВ

Резус-фактор – это белок, который присутствует в плазме крови большинства людей. Такие люди называются резус-положительными. При отсутствии этого белка, человека считают резус-отрицательными.

Эти показатели передаются по наследству и не меняются в течении всей своей жизни. При серьезных травмах и больших кровопотерях практикуют переливание крови. Переливать можно по определенной системе. Это очень серьезная процедура, которая требует тщательного анализа.

В эритроцитах содержаться белки – агглютиногены, а плазме – агглютинины. Получается, что агглютинин В склеивается с агглютиногеном В, а агглютинин А с агглютиногеном А. 

Переливание проводят, опираясь на правило:

  • Плазменные белки реципиента не должны склеивать одноименные эритроцитарные белки донора.

Переливать разные группы крови человеку можно, но нужно придерживаться схемы. Если группа отличается, то перелить можно максимально 200 мл такой крови, для избежания превышения агглютиногенов донора.

Во время процедуры различают донора – тот, который отдает кровь, и реципиента – тот, который принимает кровь. Процедуру проводят по следующей схеме:

Группа крови

Может отдавать группам

Может принимать кровь групп

I

I, II, III, IV

I

II

II, IV

I, II

III

III, IV

I, III

IV

IV

I, II, III, IV

Также учитывают и резус-фактор. Его обозначают как Rh+ и Rh-. Кровь с отрицательным резусом может принять реципиент с любым резусом. А вот если перелить реципиенту с отрицательным резусом  резус-положительную кровь, то произойдет агглютинация эритроцитов, гемотрансфузионный шок и смерть. 

В генетике отмечается, что Rh+ люди являются доминантными над Rh-. Чтобы получился ребенок с отрицательным резусом, должны быть родители с отрицательными резусами или гомозиготными.

Если женщина Rh- беременеет и ее ребенок имеет Rh+, то тело начинает вырабатывать на него антитела. Это называется резус-конфликтом. Таким женщинам назначают дополнительное обследование и тщательно следят за состоянием плода.

Источник изображения:
Рис. 1 — Каменский А. А. Сарычева Н. Ю. Сухова Т. С., Биология. 8 класс – Вентана-Граф: 2019. – 288 с.

Смотри также:

Источник: https://bingoschool.ru/manual/305/

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: