Исходные вещества гликолиза

Содержание
  1. Аэробный и анаэробный гликолиз. Какова их роль в жизнедеятельности человеческого организма?
  2. Этапы окислительного  гликолиза. Фаза 1
  3. 1-я ступень.  Фосфорилирование глюкозы
  4. 2-я ступень.  Образование изомера  глюкозо-6-фосфата
  5. 3-я ступень. Фосфорилирование фруктозо-6-фосфата
  6. 4-я ступень. Распад фруктозо-1,6-дифосфата
  7. 5-я ступень.  Образование триозофосфатных  изомеров
  8. Фаза 2.  Синтез Адезинтрифосфата
  9. 6-я ступень  – окисление глицеральдегид-3-фосфата
  10. 7-я ступень. Перемещение  фосфатной группы с 1,3-дифосфоглицерата на адезиндифосфат
  11. 8-я ступень. Перенесение фосфорильной группы с 3-фосфоглицерата
  12. 9-я ступень. Выделение воды из 2-фосфоглицерата
  13. 10-я и последняя ступень. Перенос фосфатного остатка с ФЕП на АДФ
  14. Что такое анаэробный гликолиз?
  15. Гликолиз – это… И общие сведения окисление глюкозы
  16. Что такое гликолиз
  17. Процесс гликолиза при отсутствии кислорода
  18. Механизмы гликолиза
  19. Гликоген и крахмал, дисахариды и другие виды моносахаридов
  20. Значение гликолиза
  21. Аэробный и анаэробный гликолиз
  22. Определение
  23. Принцип действия
  24. Программа тренировок
  25. АнП
  26. Улучшение гликогенолиза
  27. Пищевые добавки
  28. Этапы
  29. Советы
  30. Бескислородное окисление глюкозы включает два этапа
  31. Гликолиз
  32. Первый этап гликолиза
  33.  Второй этап гликолиза
  34. Процесс гликолиза его реакции, аэробный и анаэробный (Таблица, схема)
  35. Схема процесса гликолиза и его реакции
  36. Таблица процесс гликолиза его реакции
  37. Анаэробное и аэробное окисление
  38. Анаэробное окисление глюкозы
  39. А. Аэробное и анаэробное окисление глюкозы
  40. В чем суть процесса биологического окисления? чем отличаются аэробное и анаэробное окисление? опишите ферментную систему, осуществляющую аэробное окисление в митохондриях. какие пищевые вещества необходимы для синтеза компонентов этой системы?

Аэробный и анаэробный гликолиз. Какова их роль в жизнедеятельности человеческого организма?

Исходные вещества гликолиза

Чтобы понять, что такое гликолиз, придется обратиться к греческой терминологии, потому что данный  термин произошел от греческих слов:  гликос – сладкий и лизис – расщепление.  От слова Гликос происходит и название глюкозы.

Таким образом, под данным термином подразумевается  процесс насыщения глюкозы кислородом, в результате которого одна молекула сладкого вещества распадается на  две микрочастицы пировиноградной кислоты.  Гликолиз – это биохимическая реакция, происходящая в живых клетках, и направленная на расщепление глюкозы.

Существует три варианта разложения глюкозы, и аэробный гликолиз  – один из них.

Процесс этот состоит из целого ряда промежуточных  химических реакций, сопровождаемых выделением  энергии.  В этом и кроется основная суть гликолиза. Высвобождаемая энергия расходуется на общую  жизнедеятельность живого организма. Общая формула расщепления глюкозы выглядит так:

Глюкоза + 2НАД+ + 2АДФ + 2Pi → 2 пируват + 2НАДH + 2Н+ + 2АТФ + 2Н2O

Аэробное окисление глюкозы с последующим расщеплением ее шестиуглеродной молекулы осуществляется посредством 10 промежуточных реакций.

Первые 5 реакций,  объединяет подготовительная   фаза подготовки, а последующие реакции  направлены на образование АТФ. В ходе реакций образуются стереоскопические изомеры сахаров и их производные.

  Основное накопление энергии клетками происходит во второй фазе, связанной с образованием АТФ.

Этапы окислительного  гликолиза. Фаза 1

В аэробном гликолизе выделяются 2 фазы.

Первая фаза – подготовительная. В ней глюкоза вступает в реакцию с 2 молекулами АТФ. Эта фаза состоит из 5 последовательных  ступеней биохимических  реакций.

1-я ступень.  Фосфорилирование глюкозы

Фосфорилирование, то есть процесс переноса остатков фосфорной кислоты в первой и последующих реакциях производится за счет молекул адезинтрифосфорной кислоты.

В первой ступени остатки фосфорной кислоты из молекул адезинтрифосфата  переносятся в молекулярную структуру глюкозы. В ходе процесса получается глюкозо-6-фосфат.  В качестве катализатора в процессе выступает гексокиназа, ускоряющая процесс с помощью ионов магния, выступающих в качестве кофактора.  Ионы магния задействованы и в других реакциях гликолиза.

2-я ступень.  Образование изомера  глюкозо-6-фосфата

На 2-й ступени происходит изомеризация глюкозо-6-фосфата  во фруктозу-6-фосфат.

Изомеризация – образование веществ, имеющих одинаковый вес, состав химических элементов, но обладающих разными свойствами вследствие различного расположения атомов в молекуле. Изомеризация веществ осуществляется под  действием внешних условий: давления, температур, катализаторов.

В данном случае процесс осуществляется  под действием катализатора  фосфоглюкозоизомеразы при  участии ионов Mg+.

3-я ступень. Фосфорилирование фруктозо-6-фосфата

На данной ступени   происходит  присоединение фосфорильной группы за счет АТФ. Процесс осуществляется при участии фермента  фосфофруктокиназа-1. Этот фермент и предназначен только для участия в гидролизе. В результате реакции  получаются  фруктозо-1,6-бисфосфат и  нуклеотид адезинтрифосфат.

АТФ – адезинтрифосфат, уникальный источник энергии в живом организме.

  Представляет собой довольно сложную и громоздкую молекулу, состоящую из углеводородных, гидроксильных групп, азота и групп фосфорной кислоты с одной свободной связью, собранных в нескольких циклических и линейных структурах.

Высвобождение энергии происходит в результате взаимодействия остатков фосфорной кислоты с водой. Гидролиз АТФ сопровождается образованием фосфорной кислоты и выделением 40-60 Дж энергии, которую организм затрачивает  на свою жизнедеятельность.

Но прежде должно произойти  фосфорилирование глюкозы за счет молекулы Адезинтрифосфата, то есть перенос  остатка фосфорной кислоты в глюкозу.

4-я ступень. Распад фруктозо-1,6-дифосфата

В четвертой реакции   фруктозо-1,6-дифосфат распадается на два новых вещества.

  • Диоксиацетонфосфат,
  • Глицеральд альдегид-3-фосфат.

В данном химическом процессе в качестве катализатора выступает альдолаза, фермент, участвующий в энергетическом обмене, и необходимый при диагностировании ряда заболеваний.

5-я ступень.  Образование триозофосфатных  изомеров

И, наконец, последний процесс  –  изомеризация триозофосфатов.

Глицеральд-3-фосфат  продолжит участвовать в процессе аэробного гидролиза. А второй компонент – диоксиацетон фосфат при участии фермента  триозофосфатизомеразы  преобразуется в глицеральдегид-3-фосфат.  Но трансформация эта –  обратимая.

Фаза 2.  Синтез Адезинтрифосфата

В данной фазе гликолиза  будет аккумулироваться  в виде АТФ биохимическая энергия.  Адезинтрифосфат образуется из адезиндифосфата за счет фосфорилирования. А также образуется НАДН.

Аббревиатура НАДН имеет очень сложную и труднозапоминаемую для неспециалиста расшифровку – Никотинамидадениндинуклеотид. НАДН – это кофермент, небелковое соединение, участвующее в  химических процессах живой клетки.  Он существует в двух формах:

  1. окисленной (NAD+, NADox);
  2. восстановленной (NADH, NADred).

В обмене веществ  NAD принимает участие в окислительно-восстановительных реакциях транспортируя электроны из одного химического процесса  в другой. Отдавая, или принимая электрон, молекула преобразуется из NAD+ в NADH, и наоборот.  В живом организме НАД  вырабатывается из триптофана или аспартата аминокислот.

Две микрочастицы  глицеральдегид-3-фосфата подвергаются реакциям, в ходе которых образуется пируват,  и 4 молекулы АТФ.  Но конечный выход адезинтрифосфата составит 2 молекулы, поскольку  две затрачены в подготовительной фазе.  Процесс продолжается.

6-я ступень  – окисление глицеральдегид-3-фосфата

В данной реакции происходит окисление и фосфорилирование  глицеральдегид-3-фосфата.  В итоге получается 1,3-дифосфоглицериновая кислота. В ускорении реакции участвует глицеральдегид-3-фосфатдегидрогеназа

Реакция происходит при участии энергии, полученной извне, поэтому она называется  эндергонической.  Такие реакции  протекают параллельно с  экзергоническими, то есть выделяющими, отдающими энергию. В данном случае такой реакцией служит следующий процесс.

7-я ступень. Перемещение  фосфатной группы с 1,3-дифосфоглицерата на адезиндифосфат

В этой промежуточной реакции  фосфорильная группа переносится фосфоглицераткиназой  с  1,3-дифосфоглицерата на адезиндифосфат.  В итоге получаются 3-фосфоглицерат и АТФ.

Фермент фосфоглицераткиназа приобрел свое название за способность катализировать реакции в обоих направлениях.  Этот фермент также транспортирует фосфатный остаток  с адезинтрифосфата  на  3-фосфоглицерат.

6-я и 7-я реакции  часто рассматриваются как единый процесс . 1,3-дифосфоглицерат в нем рассматривается как  промежуточный продукт.   Вместе 6-я и 7-я реакции выглядят так:

Глицеральдегид-3-фосфат+ADP+Pi +NAD+⇌3 -фосфоглицерат+ATP+NADH+Н+,ΔG′о = −12,2 кДж/моль.

И суммарно эти 2  процесса освобождают часть энергии.

8-я ступень. Перенесение фосфорильной группы с 3-фосфоглицерата

Получение 2-фосфоглицерата – процесс обратимый, происходит под каталитическим действием фермент фосфоглицератмутазы. Фосфорильная группа переносится с двухвалентного атома углерода 3-фосфоглицерата на трехвалентный атом  2-фосфоглицерата, в итоге образуется    2-фосфоглицериновая кислота.  Реакция проходит при участи положительно заряженных ионов магния.

9-я ступень. Выделение воды из 2-фосфоглицерата

Эта реакция в своей сути является второй реакцией расщепления глюкозы (первой была реакция 6-й ступени). В ней фермент  фосфопируватгидратаза  стимулирует  отщепление воды от атома С, то есть процесс элиминирования из молекулы 2-фосфоглицерата и образование фосфоенолпирувата (фосфоенолпировиноградной кислоты).

10-я и последняя ступень. Перенос фосфатного остатка с ФЕП на АДФ

В заключительной реакции гликолиза задействованы коферменты – калий, магний и марганец, в качестве катализатора выступает фермент пируваткиназа.

Преобразование енольной формы пировиноградной кислоты  в кето-форму является обратимым процессом, и в клетках присутствуют оба изомера. Процесс перехода изометрических веществ из одного в другой называется таутомеризацией.

Что такое анаэробный гликолиз?

Наряду с аэробным гликолизом, то есть расщеплением глюкозы при участии О2 , существует и так называемый анаэробный распад глюкозы, в котором кислород не участвует.

Он также  состоит из десяти последовательных реакций.

Но где протекает анаэробный этап гликолиза, связан ли он с процессами кислородного расщепления глюкозы,  или это самостоятельный биохимический процесс, попробуем в этом разобраться.

Анаэробный гликолиз – это распад глюкозы при отсутствии кислорода с образованием лактата.  Но в процессе образования молочной кислоты НАДН в клетке не накапливается.

Этот процесс осуществляется  в тех тканях и клетках, которые функционируют в условиях кислородного голодания – гипоксии. К таким тканям в первую очередь относятся скелетные мышцы.

В эритроцитах, несмотря на наличие кислорода,   тоже в процессе гликолиза образуется лактат, потому что в кровяных клетках отсутствуют митохондрии.

Анаэробный гидролиз протекает в цитозоле  (жидкой части цитоплазмы) клеток и является  единственным актом,  продуцирующим и поставляющим АТФ, поскольку  в данном случае  окислительное фосфорилирование  не работает.  Для окислительных процессов нужен кислород, а его в анаэробном гликолизе нет.

И пировиноградная, и молочная кислоты  служат источниками энергии, для выполнения мышцами определенных задач. Излишки кислот поступают в печень, где под действием ферментов снова превращаются в гликоген и глюкозу.

 И процесс начинается снова. Недостаток глюкозы восполняется питанием – употреблением сахара, сладких фруктов, и иных сладостей.  Так что нельзя в угоду фигуре совсем отказываться от сладкого.

Сахарозы нужны организму, но в меру.

Источник: https://RunnerClub.ru/health/aerobnyj-i-anaerobnyj-glikoliz.html

Гликолиз – это… И общие сведения окисление глюкозы

Исходные вещества гликолиза

В этой статье мы подробно рассмотрим аэробный гликолиз, его процессы, разберем стадии и этапы. Ознакомимся с анаэробным окислением глюкозы, узнаем об эволюционных видоизменениях данного процесса и определим его биологическое значение.

Что такое гликолиз

Гликолиз – это одна из трех форм окисления глюкозы, при котором сам процесс окисления сопровождается выделением энергии, которая запасается в НАДН и АТФ. В процессе гликолиза из молекулы глюкозы получают две молекулы кислоты пировиноградной.

Гликолиз – это процесс, происходящий под воздействием различных биологических катализаторов – ферментов. Главным окислителем служит кислород – О2, однако процессы гликолиза могут протекать и в его отсутствие. Такой вид гликолиза называют – анаэробный гликолиз.

Процесс гликолиза при отсутствии кислорода

Анаэробный гликолиз – ступенчатый процесс окисления глюкозы, при котором глюкоза окисляется не полностью. Образуется одна молекула пировиноградной кислоты.

А с энергетической точки зрения, гликолиз без участия кислорода (анаэробный) является менее выгодным.

Однако при поступлении кислорода в клетку анаэробный процесс окисления может превращаться в аэробный и протекать в полноценной форме.

Механизмы гликолиза

Процесс гликолиза – это разложение шестиуглеродной глюкозы на пируват трехуглеродный в виде двух молекул. Сам процесс разделяется на 5 этапов подготовки и 5 этапов, при которых запасается энергия в АТФ.

Процесс гликолиза из 2 стадий и 10 этапов выглядят следующим образом:

  • 1 стадия, этап 1 – фосфорилирование глюкозы. По шестому атому углерода в глюкозе, сам сахарид активируют через фосфорилирование.
  • Этап 2 – изомеризация глюкозы-6-фосфата. На этом этапе фосфоглюкозоимераза каталитический обращает глюкозу во фруктозу-6-фосфат.
  • Этап 3 – Фруктоза-6-фосфат и её фосфорилирование. Этот этап заключается в образовании фруктозо-1,6-дифосфата (альдолаза) путем воздействия фосфофруктокиназы-1, которая сопровождает фосфорильную группу от аденозинтрифосфорной кислоты к молекуле фруктозы.
  • Этап 4 – это процесс расщепления альдолазы с образованием двух молекул триозофосфата, а именно эльдозы и кетозы.
  • Этап 5 – триозофосфаты и их изомеризация. На этом этапе глицеральдегид-3-фосфат отправляется на последующие этапы расщепления глюкозы, а дигидроксиацетонфосфат переходит в форму глицеральдегид-3-фосфата под воздействием фермента.
  • 2 стадия, этап 6 (1) – Глицеральдегид-3-фосфат и его окисление – этап в котором данная молекула окисляется и фосфорилируется до дифосфоглицерата-1,3.
  • Этап 7 (2) – направлен на перенос группы фосфатов на АДФ с 1,3-дифосфоглицерата. Конечными продуктами данного этапа являются образование 3-фосфоглицерата и АТФ.
  • Этап 8 (3) – переход от 3-фосфоглицерата в 2-фосфоглицерат. Этот процесс происходит под воздействием фермента фосфоглицератмутаза. Обязательным условием протекания химической реакции является наличие магния (Mg).
  • Этап 9 (4) – 2 фосфоглицерта дегидратируется.
  • Этап 10 (5) – в АДФ и ФЕП переносятся фосфаты, полученные в результате прохождения предыдущих этапов. Энергия с фосфоэнулпировата переносится на АДФ. Для протекания реакции необходимо наличие ионов калия (K) и магния (Mg).

Процесс гликолиза способен сопровождаться дополнительной выработкой 1,3 и 2,3-бифосфоглицератов.

2,3-фосфоглицерат под влиянием биологических катализаторов способен возвращаться в гликолиз и переходить в форму 3-фосфоглицерата.

Роль данных ферментов разнообразная, например, 2,3-бифосфоглицерат, находясь в гемоглобине, заставляет кислород переходить в ткани, способствуя диссоциации и понижая сродство О2 и эритроцитов.

Многие бактерии изменяют формы гликолиза на различных этапах, сокращая их общее количество или видоизменяя их под воздействием разных ферментов. Небольшая часть анаэробов имеет другие методы углеводного разложения. Многие термофилы вовсе имеют лишь 2 фермента гликолиза, это енолаза и пируваткиназа.

Гликоген и крахмал, дисахариды и другие виды моносахаридов

Аэробный гликолиз – это процесс, свойственный и другим видам углеводов, а конкретно он присущ крахмалу, гликогену, большинству дисахаридов (маноза, галактоза, фруктоза, сахароза и другие). Функции всех видов углеводов в целом направлены на получение энергии, но могут различаться спецификой своего назначения, использования и т. д.

Например, гликоген поддается гликогенезу, что по сути, является фосфолитическим механизмом, нацеленным на получение энергии при расщеплении гликогена. Сам же гликоген может запасаться в организме как резервный источник энергии.

Так, например, глюкоза, получаемая во время приёма пищи, но не усвоившаяся мозгом, накапливается в печени и будет использована при недостатке глюкозы в организме с целью защитить индивид от серьезных сбоев гомеостаза.

Значение гликолиза

Гликолиз – это уникальный, однако не единственный вид окисления глюкозы в организме, клетке как прокариотов, так и эукариотов. Ферменты гликолиза являются водорастворимыми.

Реакция гликолиза в некоторых тканях и клетках может происходить только таким образом, например, в мозгу и клетках нефронов печени. Другие способы окисления глюкозы в этих органах не используются. Однако не везде функции гликолиза одинаковы.

Например, жировые ткани и печени в процессе пищеварения добывают необходимые субстраты из глюкозы для синтеза жиров. Многие растения используют гликолиз как способ добычи основной части энергии.

Источник: https://FB.ru/article/302303/glikoliz---eto-i-obschie-svedeniya-okislenie-glyukozyi

Аэробный и анаэробный гликолиз

Исходные вещества гликолиза

Для успешного прогрессирования в спорте необходимо иметь мощную теоретическую базу, позволяющую правильно строить тренировки и использовать имеющийся потенциал. Анаэробный гликолиз – важный процесс, который протекает в органических тканях и дает возможность успешно заниматься.

Какое значение он представляется для нашего организма? Как его применять при построении тренировочной программы? В каких условиях он будет проходить максимально результативно? Можно ли улучшить протекание данного явления? Как это сделать? Ответы на перечисленные вопросы читайте дальше.

Определение

Анаэробный гликолиз – ферментативный процесс, включающий последовательное преобразование виноградного сахара для получения энергии. Реакция строится на обратимом превращении пируватов в лактат посредством катализа лактатдегидрогеназой.

С ее помощью органы человека используют аденозинтрифосфат для получения сил во время тренинга. этого компонента удваивается и удерживается на таком уровне около 20 секунд, что позволяет успешно закончить подход.

Основная особенность происходящей реакции заключается в отсутствии участия O₂ и побочном образовании лактата.

Аэробный гликолиз – это схожее явление, в ходе которого также происходит разложение глюкозы с получением АДФ, обеспечивающее обмен энергии в организме. В отличие от предыдущей разновидности получения ресурсов реакция протекает с атомами кислорода и водорода. В результате побочных компонентов образуется углекислый газ и вода.

В обоих случаях энергетический выброс дает силы человеку справиться с физической нагрузкой в течение определенного времени.

Принцип действия

Описанная система обмена веществ основывается на циркуляции декстрозы в крови и гликогена, который хранится в мышцах и печени. За счет изменения конфигурации молекул происходит выделение АТФ. В результате таких преобразований осуществляются разные процессы, многие из которых не только высвобождают энергию, но и потребляют ее.

Аэробный и анаэробный гликолиз связаны с определенными энзимами, чувствительными к кислотно-щелочному балансу. Во время физических действий выделяется молочная кислота, одновременно запускающая образование ресурсов в организме и усталость. То, какое состояние будет преобладать, зависит от характера тренинга:

  • аэробика – продолжительность упражнений до 30 секунд;
  • анаэробика – длительное силовое напряжение.

Недостаток тренировок второго типа заключается в отсутствии возможности заниматься часто. В противном случае объем лактата в теле превысит допустимую норму, что повлечет упадок сил или судороги.

Нагрузки первого типа лучше подходят для развития выносливости. Они помогают в борьбе с лишним весом, укрепляют легкие, снижают артериальное давление.

Такие упражнения относятся к кардиотренировкам, развивающим устойчивость к стрессам. Но для набора мышечной массы больше подходят силовые виды спорта.

Их преимущество заключается в том, что даже в состоянии покоя сжигается большое количество калорий.

Программа тренировок

Анаэробный гликолиз и аэробный, отличия которых достаточно существенны, должны присутствовать в жизнедеятельности любого человека. Поэтому в спорте используются как кардио, так и силовые упражнения. Первые необходимы для обеспечения организма O₂, жиросжигания, похудения. Они гарантируют размеренное и продолжительное воздействие и включают:

  • езду на велосипеде;
  • плавание;
  • бег в среднем темпе;
  • катание на коньках, роликах, лыжах;
  • использование специальных тренажеров (беговая дорожка, велотренажер, степпер).

При регулярном занятии перечисленными видами спорта снижается риск развития сердечно-сосудистых заболеваний. Сердечная мышца укрепляется достаточно, чтобы выдержать силовые действия.

Благодаря этому анаэробный гликолиз, реакции которого требуют сильного физического напряжения, не нанесет вреда внутренним органам.

Он строится на так называемых «безкислородных» нагрузках (кратковременность, интенсивность, высокие силовые затраты). В данную категорию входят:

  • спринт;
  • бодибилдинг;
  • пауэрлифтинг.

В ходе тренинга потребляется минимум кислорода, поэтому основной запас энергии высвобождается из мышечных волокон. Регулярные занятия развивают мускулатуру, силовые показатели, укрепляют опорно-двигательный аппарат.

Преимущество заключается в долговременном эффекте, сохраняющемся в течение 36 часов с момента занятия в спортзале.

Ускоренный метаболизм продолжает воздействовать на организм, усиленно сжигая калории и снижая процент жировых отложений.

АнП

АнП – важное понятие в тренировках на выносливость, предполагающее «порог» интенсивности в одном занятии. Он представляет собой норму, при которой лактат в крови превышает показатель его нейтрализации.

Анаэробный гликолиз происходит в мышцах и других тканях, затрагивая работу внутренних органов. Поэтому определить АнП можно при помощи ЧСС.

Задача осуществляется путем выполнения кардионагрузок на большие дистанции или посредством подсчета в лабораторных условиях.

При высоких нагрузках количество молочной кислоты повышается, и организм прикладывает усилия, чтобы понизить этот показатель. Если АнП превысит допустимый уровень, самочувствие атлета ухудшится, и он не сможет продолжать заниматься. Чтобы предотвратить описанный исход, необходимо тренироваться, отслеживая собственный порог.

Для самостоятельного расчета АнП подходит бег. Задача осуществляется по следующей схеме:

  • пробежите дистанцию в среднем темпе в течение 30 минут;
  • через 10 минут с начала старта замеряйте пульс;
  • повторите процедуру по окончании пробежки;
  • суммируйте оба показателя;
  • разделите полученное число на 2.

Результат – анаэробный порог. Чтобы его не превысить, необходимо заниматься на 85% от допустимого максимума. Для этого рекомендуется отслеживать пульс в ходе тренировки.

Улучшение гликогенолиза

Чтобы повысить эффективность данной системы, необходимо воспользоваться специальной тренировочной программой. При правильном подходе содержание глюкозы и гликогена увеличится, за счет чего усилится выработка энергии, позволяющая дольше заниматься. Для формирования привычки к более высокому уровню молочной кислоты и наработки выносливости, следует:

  • тренироваться со средней и высокой интенсивностью;
  • использовать веса, с которым можно сделать 8-15 повторений в одном сете;
  • отдыхать между подходами 30-60 секунд.

Большой объем, умеренные веса и короткие перерывы повысят выработку лактата. При регулярных занятиях тело адаптируется к высокому показателю данного вещества, выполнять упражнения станет легче, утомляемость снизится. Активируется работа энергетической системы, усиливающей выработку ресурсов, используемых для выполнения силовых упражнений.

Пищевые добавки

Для улучшения гликогенолиза изобретено спортивное питание, ускоряющее синтез компонентов, принимающих в нем участие.

Пищевые добавки позволяют организму вырабатывать больше виноградного сахара и гликогена, за счет чего сроки восстановления сокращаются. Но описанная особенность распространяется не на всех людей.

Если человек испытывает нехватку разных компонентов, спортивное питание улучшит гликогенолиз. В противном случае разница в энергетическом балансе незаметна.

Этапы

Переработка глюкозы в энергию в клетках состоит из трех стадий:

  • Подготовительный гликолиз аэробный. На этом этапе декстроза расщепляется и преобразуется в пируват.
  • катаболизм.
  • Тканевое дыхание. Необходимые питательные вещества вырабатываются по митохондриальной цепи переноса электронов.

Всего из одной молекулы глюкозы возникает 38 молекул АТФ. Участие кислорода в реакции тормозит процесс. Но его отсутствие не принесет вреда, поскольку гликогенолиз рассчитан на короткие интенсивные нагрузки. При активном дыхании в клетках происходит переключение на более экономичный вариант получения ресурсов.

Советы

Большинство людей не знает, где протекает анаэробный этап гликолиза. Данное явление происходит в цитоплазме клеток, но для результативного тренинга это не имеет значения точно так же, как и то, какие продукты и ферменты выделяются. Главное для атлета – придерживаться основных рекомендаций, обеспечивающих эффективную тренировку и восстановление.

Для этого:

  • чередуйте силовые с кардио;
  • не занимайтесь дольше 30-40 минут, чтобы уровень гормона стресса не превысил норму;
  • распределите «кислородные» и «безкислородные» занятия по разным дням;
  • не перегружайте мышцы;
  • делайте разминку, чтобы мышечные ткани лучше воспринимали поступление молочной кислоты;
  • давайте время телу восстановиться (1-3 дня в зависимости от интенсивности тренировки).

Не забывайте о режиме сна, здоровом питании, отсутствии вредных привычек. Перечисленные факторы создадут условия для хорошей работы внутренних органов, благодаря чему обменные процессы будут протекать быстрее и эффективнее. Периодизированная программа обеспечит результативную гипертрофию.

Также учитывайте состояние здоровья. Нарушение метаболизма негативно сказывается на энергетическом обмене в клетках и гликогенолизе. Поэтому предварительный расчет АнП и медицинский осмотр – обязательны.

При обнаружении проблем со здоровьем интенсивность нагрузок необходимо снизить, иначе будет нарушен не только метаболизм, но и работа внутренних органов.

Источник: https://zen.yandex.ru/media/fiteria/aerobnyi-i-anaerobnyi-glikoliz-5ea2d19f61b0b56bcc486b0c

Бескислородное окисление глюкозы включает два этапа

Исходные вещества гликолиза

В анаэробном процессе пировиноградная кислота восстанавливается до молочной кислоты (лактата), поэтому в микробиологии анаэробный гликолиз называют молочнокислым брожением. Лактат далее ни во что не превращается, единственная возможность утилизовать лактат – это окислить его обратно в пируват.

Многие клетки организма способны к анаэробному окислению глюкозы. Для эритроцитов он является единственным источником энергии.

Клетки скелетной мускулатуры за счет бескислородного расщепления глюкозы способны выполнять мощную, быструю, интенсивную работу, как, например, бег на короткие дистанции, напряжение в силовых видах спорта.

Вне физических нагрузок бескислородное окисление глюкозы в клетках усиливается при гипоксии – при различного рода анемиях, при нарушении кровообращения в тканях независимо от причины.

Гликолиз

Анаэробное превращение глюкозы локализуется в цитозоле и включает два этапа из 11 ферментативных реакций.

Первый этап гликолиза

Первый этап гликолиза – подготовительный, здесь происходит затрата энергии АТФ, активация глюкозы и образование из нее триозофосфатов.

Первая реакция гликолиза сводится к превращению глюкозы в реакционно-способное соединение за счет фосфорилирования 6-го, не включенного в кольцо, атома углерода. Эта реакция является первой в любом превращении глюкозы, катализируется гексокиназой.

Вторая реакция необходима для выведения еще одного атома углерода из кольца для его последующего фосфорилирования (фермент глюкозофосфат-изомераза). В результате образуется фруктозо-6-фосфат.

Третья реакция – фермент фосфофруктокиназа фосфорилирует фруктозо-6-фосфат с образованием почти симметричной молекулы фруктозо-1,6-дифосфата. Эта реакция является главной в регуляции скорости гликолиза.

В четвертой реакции фруктозо-1,6-дифосфат разрезается пополам фруктозо-1,6-дифосфат-альдолазой с образованием двух фосфорилированных триоз-изомеров – альдозы глицеральдегида (ГАФ) и кетозы диоксиацетона (ДАФ).

Пятая реакция подготовительного этапа – переход глицеральдегидфосфата и диоксиацетонфосфата друг в друга при участии триозофосфатизомеразы. Равновесие реакции сдвинуто в пользу диоксиацетонфосфата, его доля составляет 97%, доля глицеральдегидфосфата – 3%. Эта реакция, при всей ее простоте, определяет дальнейшую судьбу глюкозы:

  • при нехватке энергии в клетке и активации окисления глюкозы диоксиацетонфосфат превращается в глицеральдегидфосфат, который далее окисляется на втором этапе гликолиза,
  • при достаточном количестве АТФ, наоборот, глицеральдегидфосфат изомеризуется в диоксиацетонфосфат, и последний отправляется на синтез жиров.

 Второй этап гликолиза

Второй этап гликолиза – это освобождение энергии, содержащейся в глицеральдегидфосфате, и запасание ее в форме АТФ.

Шестая реакция гликолиза (фермент глицеральдегидфосфат-дегидрогеназа) – окисление глицеральдегидфосфата и присоединение к нему фосфорной кислоты приводит к образованию макроэргического соединения 1,3-дифосфоглицериновой кислоты и НАДН.

В седьмой реакции (фермент фосфоглицераткиназа) энергия фосфоэфирной связи, заключенная в 1,3-дифосфоглицерате тратится на образование АТФ.

Реакция получила дополнительное название – реакция субстратного фосфорилирования, что уточняет источник энергии для получения макроэргической связи в АТФ (от субстрата реакции) в отличие от окислительного фосфорилирования (использование энергии электрохимического градиента ионов водорода на мембране митохондрий).

Восьмая реакция – синтезированный в предыдущей реакции 3-фосфоглицерат под влиянием фосфоглицератмутазы изомеризуется в 2-фосфоглицерат.

Девятая реакция – фермент енолаза отрывает молекулу воды от 2-фосфоглицериновой кислоты и приводит к образованию макроэргической фосфоэфирной связи в составе фосфоенолпирувата.

Десятая реакция гликолиза – еще одна реакция субстратного фосфорилирования – заключается в переносе пируваткиназой макроэргического фосфата с фосфоенолпирувата на АДФ и образовании пировиноградной кислоты.

Последняя реакция бескислородного окисления глюкозы, одиннадцатая – образование молочной кислоты из пирувата под действием лактатдегидрогеназы. Важно то, что эта реакция осуществляется только в анаэробных условиях. Эта реакция необходима клетке, так как НАДН, образующийся в 6-й реакции, в отсутствие кислорода не может окисляться в митохондриях.

У плода и детей первых месяцев жизни преобладает анаэробный распад глюкозы, в связи с чем концентрация молочной кислоты в крови у них выше чем у взрослых. 
При наличии кислорода пировиноградная кислота переходит в митохондрию и превращается в ацетил-S-КоА. 

Источник: https://biokhimija.ru/uglevody/glikoliz.html

Процесс гликолиза его реакции, аэробный и анаэробный (Таблица, схема)

Исходные вещества гликолиза

Гликолиз  –  процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты, не является мембранозависимым процессом. Он происходит в цитоплазме. Однако ферменты гликолиза связаны со структурами цитоскелета.

Суть гликолиза состоит в том, что молекула глюкозы (C6H12O6) без участия кислорода распадается на две молекулы пировиноградной кислоты (СН3СОСООН).

При этом окисление идет за счет отщепления от молекулы глюкозы четырех атомов водорода, связывающихся со сложным органическим веществом НАД с получением двух молекул НАД•Н. Выделяющаяся при этом энергия запасается (40% от общего количества) в виде макроэргических связей двух молекул АТФ.

60% энергии выделяется в виде тепла. При последующем окислении НАД•Н получается еще 6 молекул АТФ. Таким образом, полный энергетический выход гликолиза в анаэробных условиях составляет 8 молекул АТФ.

Аэробный процесс гликолиза (10 реакций), уравнение (с образованием пирувата):

C6H12O6 + 2АДФ + 2Н3РO4 + 2НАД+  ——>  2CH3COCOOH + 2АТФ + 2Н2O + 2НАДН•Н+

Анаэробный процесс гликолиза (11 реакций), уравнение (с образованием лактата):

C6H12O6 + 2АДФ + 2Н3РO4  ——>  2СН3СНОНСООН + 2АТФ + 2Н2О

Схема процесса гликолиза и его реакции

На схеме в рамках обозначены исходные субстраты и конечные продукты гликолиза, цифрами в скобках – число молекул.

ATP (АТФ) – это аденозинтрифосфорная кислота, универсальный источник энергии

ADP (АДФ) – это аденозиндифосфат, нуклеотид, участвует в энергетическом обмене

NAD (НАД) – никотинамидадениндинуклеотидфосфата

NADH (НАД•Н) – востановленная форма NAD

Таблица процесс гликолиза его реакции

Для распада и частичного окисления молекулы глюкозы требуется протекание 11 сложных последовательных реакций.

Реакции гликолизаХод реакцийФерменты, Активаторы, ингибиторы
Стадия активации глюкозы проходит в 5 реакций, в ходе которых 1 молекула гексозы (глюкозы) расщепляется на 2 молекулы триоз-глицеральдегидфосфата
1. Необратимая реакция фосфорилирования глюкозыПроцесс гликолиза начинается с фосфорилирования глюкозы за счет АТФ – первая реакция. Это первая пусковая реакция гликолиза. Ее результатом является глюкозо-6-фосфат, имеющий отрицательный заряд. В гликолизе может участвовать не только глюкоза, но и другие гексозы (фруктоза), но в результате фосфорилирования и активации все равно образуется глюкозо-6-фосфат.фермент: гексокиназаАктиваторы: АДФ, Н3РO4.Ингибиторы: глюкозо-6-Ф, фосфоенолпируват.
2. Обратимая реакция изомеризации глюкозо-6-фосфатаВо второй реакции происходит изомеризация (внутримолекулярные перестройки) глюкозо-6-фосфата во фруктозо-6-фосфат.фермент: глюкозо-6-фосфатизомераза
3. Необратимая реакция фосфорилирования фруктозо-6-фосфата (ключевая стадия гликолиза)В третьей реакции происходит фосфорилирование (присоединение остатка ортофосфорной кислоты) фруктозо-6-фосфата с образованием фруктозо-1,6-дифосфата. При этом затрачивается еще одна молекула АТФ (уже вторая) – это вторая пусковая реакция гликолиза. Она идет в присутствии Mg2+ и является необратимой, так как сопровождается масштабным уменьшением свободной энергии.фермент: фосфофруктокиназаАктиваторы: АДФ, АМФ, Н3РO4, К+.Ингибиторы: АТФ, цитрат, НАДН.
4. Обратимая реакция дихотомического расщепления фруктозо-1,6-дифосфатаВ четвертой реакции гликолиза происходит расщепление фруктозо-1,6-дифосфата на две молекулы глицеральдегид-3-фосфата.фермент: алъдолаза
5. Обратимая реакция изомеризации дигидроксиацетона-3-фосфат в глицеральдегид-3-фосфатВ пятой реакции происходит изомеризация полученных триозофосфатов. На этом заканчивается первая стадия гликолиза.фермент: триозофосфатизомераза
Проходит в 6 реакций (или 5), в ходе которых энергия окислительных реакций трансформируется в химическую энергию АТФ (субстратное фосфорилирование).
6. Окисление глицеральдегид-3-фосфата до 1,3-дифосфоглицерата (реакция гликолитической оксиредукции)В шестой реакции происходит окисление альдегидной группы до карбоксильной. Выделившийся Н+ акцептируется NAD, который восстанавливается до NADH. Освобождающаяся энергия затрачивается для образования высокоэнергетической связи 1,3-бифосфоглицерата (1,3-бифосфоглицериновая кислота).фермент: глицералъдегид-3-фосфат-дегидрогеназа
7. Субстратное фосфорилирование АДФ (7)В седьмой реакции фосфорильная группа 1,3-бифосфоглицерата переносится на ADP, в результате чего образуется АТР (напоминаем, что следует иметь в виду две параллельные цепи реакций, с участием двух молекул триоз, образовавшихся из одной молекулы гексозы, следовательно, синтезируется не одна, а две молекулы АТР).фермент: фосфоглицераткиназа
8. Реакция изомеризации 3-фосфоглицерата в 2-фосфоглицератВ восьмой реакции гликолиза происходит перенос фосфатной группы с третьего атома углерода на второй. В результате образуется 2-фосфоглицерат (2-фосфоглицериновая кислота).
9. Реакция енолизацииДевятая реакция сопровождается внутримолекулярными окислительно-восстановительными процессами, в результате которых образуется фосфоенолпируват (фосфоенолпировиноградная кислота) с высокоэнергетической связью во втором атоме углерода и отщепляется молекула водыфермент: енолаза
10. Реакция субстратного фосфорилированияВ ходе десятой реакции фосфорильная группа переносится на ADP. При этом синтезируется АТР и пируват (пировиноградная кислота). Эта реакция также необратима, поскольку высокоэкзергонична.фермент: пируваткиназа
11. Реакция обратимого восстановления пировиноградной кислоты до молочной кислоты (в анаэробных условиях)Если после гликолиза следует аэробное расщепление, пируват мигрирует в матрикс митохондрий, где, взаимодействуя с коэнзимом-А, участвует в образовании ацетил-СоА. В анаэробных условиях пируват при участии NADH восстанавливается до лактата (молочной кислоты), который при этом является конечным продуктом гликолиза. Затем в аэробных условиях лактат может обратно превратиться в пируват и окислиться в митохондриях.фермент: лактатдегидрогеназа

_______________

Источник информации:

1. Биология для поступающих в вузы / Г.Л. Билич, В.А. Крыжановский. — 2008.

2. Биология в таблицах и схемах / Спб. — 2004.

3. Биохимия в схемах и таблицах / И. В. Семак – Минск — 2011.

Источник: https://infotables.ru/biologiya/81-biokhimiya/1048-glikoliz

Анаэробное и аэробное окисление

Исходные вещества гликолиза

В аэробных условиях глюкоза окисляется до СО2 и Н2О. Суммарное уравнение:

Этот процесс включает несколько стадий:

Аэробный гликолиз. В нем происходит окисления 1 глюкозы до 2 ПВК, с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются) и 2 НАДН2;

Превращение 2 ПВК в 2 ацетил-КоА с выделением 2 СО2 и образованием 2 НАДН2;

ЦТК. В нем происходит окисление 2 ацетил-КоА с выделением 4 СО2, образованием 2 ГТФ (дают 2 АТФ), 6 НАДН2 и 2 ФАДН2;

Цепь окислительного фосфорилирования. В ней происходит окисления 10 (8) НАДН2, 2 (4) ФАДН2 с участием 6 О2, при этом выделяется 6 Н2О и синтезируется 34 (32) АТФ.

В результате аэробного окисления глюкозы образуется 38 (36) АТФ, из них: 4 АТФ в реакциях субстратного фосфорилирования, 34 (32) АТФ в реакциях окислительного фосфорилирования. КПД аэробного окисления составит 65%.

Анаэробное окисление глюкозы

Катаболизм глюкозы без О2 идет в анаэробном гликолизе и ПФШ (ПФП).

В ходе анаэробного гликолиза происходит окисления 1 глюкозы до 2 молекул молочной кислоты с образованием 2 АТФ (сначала 2 АТФ затрачиваются, затем 4 образуются). В анаэробных условиях гликолиз является единственным источником энергии. Суммарное уравнение: С6Н12О6 + 2Н3РО4 + 2АДФ → 2С3Н6О3 + 2АТФ + 2Н2О.

В ходе ПФП из глюкозы образуются пентозы и НАДФН2. В ходе ПФШ из глюкозы образуются только НАДФН2.

Гликолиз – главный путь катаболизма глюкозы (а также фруктозы и галактозы). Все его реакции протекают в цитозоле.

Аэробный гликолиз – это процесс окисления глюкозы до ПВК, протекающий в присутствии О2.

Анаэробный гликолиз – это процесс окисления глюкозы до лактата, протекающий в отсутствии О2.

Анаэробный гликолиз отличается от аэробного только наличием последней 11 реакции, первые 10 реакций у них общие.

В любом гликолизе можно выделить 2 этапа:

1 этап подготовительный, в нем затрачивается 2 АТФ. Глюкоза фосфорилируется и расщепляется на 2 фосфотриозы;

2 этап, сопряжён с синтезом АТФ. На этом этапе фосфотриозы превращаются в ПВК. Энергия этого этапа используется для синтеза 4 АТФ и восстановления 2НАДН2, которые в аэробных условиях идут на синтез 6 АТФ, а в анаэробных условиях восстанавливают ПВК до лактата.

Энергетический баланс гликолиза

Таким образом, энергетический баланс аэробного гликолиза:

8АТФ = -2АТФ + 4АТФ + 6АТФ (из 2НАДН2)

Энергетический баланс анаэробного гликолиза:

2АТФ = -2АТФ + 4АТФ

Общие реакции аэробного и анаэробного гликолиза

1. Гексокиназа(гексокиназа II, АТФ: гексозо-6-фосфотрансфераза) в мышцах фосфорилирует в основном глюкозу, меньше – фруктозу и галактозу. Кm + оксидоредуктаза (фосфорилирующая)) состоит из 4 субъединиц. Катализирует образование макроэргической связи в 1,3-ФГК и восстановление НАДН2, которые используются в аэробных условиях для синтеза 8 (6) молекул АТФ.

7.Фосфоглицераткиназа (АТФ: 3ФГК-1-фосфотрансфераза). Осуществляет субстратное фосфорилирование АДФ с образованием АТФ.

В следующих реакциях низкоэнергетический фосфоэфир переходит в высокоэнергетический фосфат.

8.Фосфоглицератмутаза (3-ФГК-2-ФГК-изомераза) осуществляет перенос фосфатного остатка в ФГК из по­ложения 3 положение 2.

9.Енолаза (2-ФГК: гидро-лиаза) от­щепляет от 2-ФГК молекулу воды и образует высокоэнергетическую связь у фосфора. Ингибируется ионами F – .

10.Пируваткиназа (АТФ: ПВК-2-фосфотрансфераза) осуществляет субстратное фосфорилирование АДФ с образованием АТФ. Активируется фруктозо-1,6-дф, глюкозой. Ингибируется АТФ, НАДН2, глюкагоном, адреналином, аланином, жирными кислотами, Ацетил-КоА. Индуктор: инсулин, фруктоза.

Образующаяся енольная форма ПВК затем неферментативно переходит в бо­лее термодинамически стабильную кетоформу. Данная реакция является последней для аэробного гликолиза.

Дальнейший катаболизм 2 ПВК и использование 2 НАДН2 зависит от наличия О2.

А. Аэробное и анаэробное окисление глюкозы

/ — Далее Разделы / А. Аэробное и анаэробное окисление глюкозы

В присутствии кислорода (в аэробных условиях) большинство клеток животных получают энергию за счёт полного разрушения питательных веществ (липидов, аминокислот и углеводов), то есть за счёт окислительных процессов.

В отсутствие кислорода (анаэробные условия) клетка может синтезировать АТФ (АТР) только за счёт гликолитического разрушения глюкозы.

Хотя такое разрушение глюкозы, заканчивающееся образованием лактата, даёт незначительную энергию для синтеза АТФ, этот процесс имеет решающее значение для существования клеток при недостатке или в отсутствие кислорода.

В аэробных условиях (на схеме слева) АТФ образуется почти исключительно за счёт окислительного фосфорилирования (см. Геном). Жирные кислоты в виде ацилкарнитина попадают в матрикс митохондрий (см. Транспортные системы), где подвергаются β-окислению с образованием ацил-КоА (см. Потенциал покоя и потенциал действия).

Глюкоза в цитоплазме превращается в пируват путём гликолиза (см. Метаболизм липидов). Пируват транспортируется в митохондриальный матрикс, где декарбоксилируется пируватдегидрогеназным комплексом (см. Кислотно-основной баланс) с образованием ацетил-КоА.

Восстановительные эквиваленты [2 НАДН + Н + (NADH + Н + ) на молекулу глюкозы], высвобождающиеся при гликолизе, переносятся в матрикс митохондрий малатным челноком. Образующиеся из жирных кислот ацетильные остатки окисляются до CO2 в цитратном цикле (см. Фибринолиз. Группы крови).

Деградация аминокислот также приводит к ацетильным остаткам или продуктам, которые непосредственно включаются в цитратный цикл (см. Механизм действия гидрофильных гормонов). В соответствии с энергетическими потребностями клетки восстановительные эквиваленты переносятся дыхательной цепью на кислород (см.

Белки главного комплекса гисто-совместимости). При этом высвобождается химическая энергия, которая путём создания протонного градиента используется для синтеза АТФ (см. Моноклональные антитела, иммуноанализ).

В отсутствие кислорода, то есть в анаэробных условиях (на схеме справа), картина полностью меняется. Так как электронных акцепторов для дыхательной цепи не хватает, НАДН + Н + и QH2 не могут окисляться повторно.

Вследствие этого останавливается не только митохондриальный синтез АТФ, но почти весь обмен веществ в митохондриальном матриксе. Главной причиной такой остановки является высокая концентрация НАДН (NADH), ингибирующая цитратный цикл и пируватдегидрогеназу (см. Компенсаторные функции печени).

Останавливаются также процесс β-окисления и функционирование малатного челнока, зависящие от наличия свободного НАД + . Поскольку энергия уже не может быть получена за счёт деградации аминокислот, клетка становится полностью зависимой в энергетическом отношении от потребления глюкозы при гликолизе.

При этом обязательным условием является постоянное окисление образующегося НАДН + Н + . Так как этот процесс уже не может идти в митохондриях, в клетках животных, функционирующих в анаэробных условиях, пируват восстанавливается до лактата, который поступает в кровь. Процессы этого типа называют брожением (см.

Ферментация). Продукция АТФ при этих процессах незначительна: при образовании лактата возникают только 2 молекулы АТФ на молекулу глюкозы.

Для того чтобы оценить число образованных в аэробном состоянии молекул АТФ, необходимо знать так называемое P/O-соотношение, то есть молярное соотношение синтезированных АТФ (Р) и воды (O).

Во время переноса двух электронов от НАДН на O2 в межмембранное пространство транспортируются около 10 протонов и только 6 молекул убихинола (QH2). Для синтеза АТФ АТФ-синтаза нуждается в трёх ионах Н + , так что максимальное возможное Р/O-соотношение составляет примерно 3 или, соответственно, 2 (для убихинола).

Нужно, однако, учитывать, что при переходе метаболитов в матрикс и обмене митохондриального АТФ 4- на цитоплазматический АДФ 3- в межмембранном пространстве также расходуются протоны. Поэтому при окислении НАДН Р/O-соотношение скорее всего составляет 2,5, а при окислении QH2 — 1,5.

Если на основе этих величин рассчитать энергобаланс аэробного гликолиза, получается, что окисление одной молекулы глюкозы сопровождается синтезом 32 молекул АТФ.

В чем суть процесса биологического окисления? чем отличаются аэробное и анаэробное окисление? опишите ферментную систему, осуществляющую аэробное окисление в митохондриях. какие пищевые вещества необходимы для синтеза компонентов этой системы?

Биологическое окисление – это совокупность реакций окисления субстратов в живых клетках, основная функция которых – энергетическое обеспечение метаболизма.

Биологическое окисление веществ в тканях организма, как и процесс горения, сопряжено с освобождением энергии.

Установлена взаимосвязь процесса окисления с фосфорилированием АДФ: энергия, выделяющаяся при окислении питательных веществ, не только рассеивается в виде тепла, но и накапливается в молекулах АТФ.

Источник: https://pro-plavanie.ru/vidy-pryzhkov/anaerobnoe-i-aerobnoe-okislenie

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: