Ионотропные и метаботропные

Содержание
  1. Метаботропные рецепторы: их характеристики и функции
  2. Основное определение: что такое приемник?
  3. Метаботропные рецепторы
  4. Некоторые нейромедиаторы с метаботропными рецепторами
  5. 1. Ацетилхолиновые и мускариновые рецепторы
  6. 2. Дофамин
  7. 3. Норадреналин и адреналин
  8. 4. Серотонин
  9. 5. Глутамат и метаботропный рецептор
  10. 6. Гамма-аминомасляная кислота или ГАМК
  11. Библиографические ссылки:
  12. Рецептор. Определение. Классификация и свойства рецептора. (September 2020)
  13. Очень нервное возбуждение
  14. Перегрузка сети
  15. Голоса в голове
  16. Глутамат, Разгон Мозга!
  17. Как работает глутамат?
  18. Копнем еще глубже, как это происходит!
  19. Плюсы:
  20. Минусы:
  21. Как увеличить выработку глутамата натурально?
  22. Добавки для увеличения глутамата:
  23. Добавки для снижения глутамата:
  24. Интересный момент
  25. Итог:
  26. Глутаминовая кислота и мозг: NMDA-рецепторы
  27. Глутаминовая кислота – нейромедиатор
  28. Глутаматные рецепторы
  29. Ионотропные рецепторы
  30. NMDA-рецепторы

Метаботропные рецепторы: их характеристики и функции

Ионотропные и метаботропные

Сегодня большая часть населения знает, что мозговая информация передается от биоэлектрических импульсов, которые проходят через пучки нейронов или нервов к месту назначения, что позволяет этому факту воспринимать и воздействовать на внутреннюю и внешнюю среду. ,

Эта передача зависит от того, могут ли разные нейроны устанавливать соединение и передавать либо напряжение, либо нейротрансмиттеры, определяя для него какой-то механизм, который позволяет обнаруживать и интегрировать эти элементы в постсинаптический нейрон для генерирования реакции или нет. форма потенциала действия (или другие виды потенциала). Эти элементы называются приемниками. Есть в основном два основных типа приемников, и метаботропные рецепторы являются одними из наиболее важных и известных .

  • Статья по теме: «Типы нейротрансмиттеров: функции и классификация»

Основное определение: что такое приемник?

Термин «рецептор» часто используется в большом количестве контекстов и областей, среди которых физика, электроника или судебная сфера. Другим из этих контекстов является нейробиология, именно на этом мы сосредоточимся в этой статье.

На уровне нейронов мы называем рецепторы набором белков, которые являются частью нейрональной мембраны (или глиальными, поскольку было показано, что они также имеют некоторые рецепторы), и что они действуют как средство общения с внешней стороной клетки.

Это элементы, которые действуют как мост или замок между внутренней и внешней частью нейрона, и это активируется только при поступлении определенных веществ (если ими управляют нейротрансмиттеры) или перед определенными электрическими зарядами таким образом, что они открывают каналы, через которые проходят ионы, что позволит генерировать потенциалы разных типов. Они особенно важны в генерации возбуждающих и ингибирующих потенциалов, которые облегчают или подавляют возможность появления потенциала действия, и которые в конечном итоге позволяют нейронную связь и передачу информации.

Существуют различные типы нейрохимических рецепторов, два основных типа – ионотропные и метаботропные рецепторы. Именно в последнем мы собираемся сосредоточиться на этой статье.

Метаботропные рецепторы

Метаботропные рецепторы являются одними из основных и наиболее соответствующих типов нейрохимических рецепторов, активация от приема специфическим лигандом или нейротрансмиттером , Это приемники, которые демонстрируют относительно низкую производительность, поскольку их активация не генерирует немедленное открытие канала, но запускает серию процессов, которые в конечном итоге приводят к нему.

Прежде всего, необходимо, чтобы рассматриваемый нейротрансмиттер связывался с рецептором, чем-то, что будет генерировать активацию, известную как белок G, элемент, который может либо открыть канал, чтобы они могли входить и / или выходить из определенных ионов или активировать другие элементы. , который будет известен как вторые посланники. Таким образом, производительность этих рецепторов довольно косвенная.

Хотя метаботропные рецепторы относительно медленнее, чем другие типы рецепторов, истина заключается в том, что их эффективность также более длительна со временем.

Еще одним преимуществом этих приемников является то, что они позволяют открывать разные каналы одновременно, так как вторые мессенджеры могут действовать каскадно (генерирование активации различных белков и веществ) таким образом, что действие метаботропных рецепторов может быть более многочисленным и облегчать генерацию какого-либо типа потенциала.

И они не только открывают каналы: вторые посланники могут выполнять различные действия в нейроне и даже могут взаимодействовать с ядром, не открывая канал для него.

  • Может быть, вы заинтересованы: “Типы нейронов: характеристики и функции”

Некоторые нейромедиаторы с метаботропными рецепторами

Метаботропные рецепторы они очень распространены в нашей нервной системе , взаимодействуя с различными типами нейротрансмиттеров. Ниже мы упомянем некоторые более конкретные примеры нейротрансмиттеров, которые служат лигандом для некоторых метаботропных рецепторов, присутствующих в нашем организме.

1. Ацетилхолиновые и мускариновые рецепторы

Ацетилхолин является одним из веществ, обладающих специфическим типом метаботропных рецепторов, так называемыми мускариновыми рецепторами. Этот тип рецептора может быть как возбуждающим, так и тормозящим, вызывая различные эффекты в зависимости от его местоположения и функции.

Это преобладающий тип холинергических рецепторов в центральной нервной системе. , а также в парасимпатической ветви вегетативной нервной системы (связана с сердцем, кишечником и слюнными железами).

Однако необходимо учитывать, что ацетилхолин также имеет другие типы рецепторов, никотиновые, которые не являются метаботропными, но ионотропными.

  • Статья по теме: «Части нервной системы: функции и анатомические структуры»

2. Дофамин

Дофамин – еще одно вещество с метаботропными рецепторами. На самом деле, в этом случае мы находим, что все дофаминергические рецепторы являются метаботропными Существуют различные типы в зависимости от того, является ли их действие возбуждающим или тормозящим, и действуют ли они на пре- или постсинаптическом уровне.

3. Норадреналин и адреналин

Как и в случае с дофамином, из которого он получен, норадреналин также обладает всеми каналами метаботропного типа. Адреналин, полученный из норадреналина, тоже.

Они обнаруживаются как внутри, так и снаружи нервной системы (например, в жировой ткани), и существуют разные типы в зависимости от того, являются ли они возбуждающими или тормозящими или действуют ли они до или после синаптического .

4. Серотонин

Также серотонин имеет метаботропные рецепторы, это тип большинства. Однако рецептор 5-HT3 является ионотропным. Они в основном тормозные.

5. Глутамат и метаботропный рецептор

Глутамат одно из основных возбуждающих веществ мозга , но большинство его рецепторов (и самых известных, таких как NMDA и AMPA) являются ионотропными. Был идентифицирован только один тип глутаматергического рецептора, который просто не получил название метаботропный глутаматный рецептор.

6. Гамма-аминомасляная кислота или ГАМК

В отличие от глутамата, ГАМК является основным ингибитором мозга. Из него были идентифицированы два типа основного рецептора, являющиеся метаботропным типом GABAb.

Библиографические ссылки:

  • Гомес, М .; Espejo-Saavedra, J.M. и Taravillo, B. (2012). Психобиология. CEDE Подготовка руководства PIR, 12. CEDE: Мадрид.
  • Кандел Е.Р .; Schwartz, J.H .; Джесселл, Т.М. (2001). Принципы нейробиологии. Мадрид: McGrawHill.

Рецептор. Определение. Классификация и свойства рецептора. (September 2020)

Источник: https://ru.yestherapyhelps.com/metabotropic-receptors-their-characteristics-and-functions-14350

Очень нервное возбуждение

Ионотропные и метаботропные

Глутаминовая кислота. Молекула-трудоголик: главный возбуждающий нейромедиатор, посредник в профессиональных схемах других «нейропосредников», регулятор синаптической пластичности и… просто строительный кирпичик белков. Рисунок с сайта www.deviantart.com.

Шестая (и последняя) статья цикла о нейромедиаторах будет посвящена глутамату. Это вещество больше знакомо нам как усилитель вкуса в продуктах, но оно играет важную роль в нашей нервной системе. Глутамат — это самый распространенный возбуждающий нейротрансмиттер в нервной системе млекопитающих вообще и человека в частности.

Глутамат (глутаминовая кислота) является одной из 20 основных аминокислот. Кроме участия в синтезе белков он может выполнять функцию нейромедиатора — вещества, которое передает сигнал от одной нервной клетки к другой в синаптической щели.

При этом нужно учитывать, что глутамат, который есть в пище, не проникает через гематоэнцефалический барьер, то есть не оказывает прямого влияния на мозг. Глутамат образуется в клетках нашего тела из α-кетоглутарата путем трансаминирования.

Аминогруппа переносится с аланина или аспартата, заменяя кетоновый радикал α-кетоглутарата (рис. 1). В итоге мы получаем глутамат и пируват или щавелевоуксусную кислоту (в зависимости от донора аминогруппы).

Два последних вещества участвуют во многих важных процессах: щавелевоуксусная кислота, например, — это один из метаболитов в великом и ужасном цикле Кребса. Разрушение глутамата происходит при помощи фермента глутаматдегидрогеназы, и в ходе реакции образуются уже знакомый нам α-кетоглутарат и аммиак.

Рисунок 1. Синтез глутамата. Глутамат образуется из α-кетоглутарата путем замены кетогруппы на аминогруппу. При проведении реакции в клетках тратится никотинамидадениндинуклеотидфосфат (НАДФ, NADP). Рисунок с сайта lecturer.ukdw.ac.id.

У глутамата, как и у большинства других медиаторов, есть два типа рецепторов — ионотропные (которые открывают мембранную пору для ионов в ответ на присоединение лиганда) и метаботропные (которые при присоединении лиганда вызывают метаболические перестройки в клетке).

Группа ионотропных рецепторов делится на три семейства: NMDA-рецепторы, AMPA-рецепторы и рецепторы каиновой кислоты. NMDA-рецепторы так называются, поскольку их селективным агонистом, веществом, избирательно стимулирующим эти рецепторы, является N-метил-D-аспартат (NMDA).

В случае AMPA-рецепторов таким агонистом будет α-аминометилизоксазолпропионовая кислота, а каинатные рецепторы избирательно стимулируются каиновой кислотой. Это вещество содержится в красных водорослях и используется в нейробиологических исследованиях для моделирования эпилепсии и болезни Альцгеймера.

В последнее время к ионотропным рецепторам стали также добавлять δ-рецепторы: они расположены на клетках Пуркинье в мозжечке млекопитающих. Стимуляция «классических» — NMDA-, AMPA- и каинатных — рецепторов приводит к тому, что калий начинает выходить из клетки, а кальций и натрий поступают в клетку.

В ходе этих процессов в нейроне возникает возбуждение, и запускается потенциал действия. Метаботропные же рецепторы связаны с системой G-белков и участвуют в процессах нейропластичности [1]. Под нейропластичностью понимается способность нервных клеток образовывать новые связи друг другом или уничтожать их.

Также в понятие нейропластичности включается способность синапсов изменять количество высвобождаемого нейромедиатора в зависимости от того, какие поведенческие акты и мыслительные процессы происходят в данный момент и с какой частотой.

Глутаматная система неспецифична: на глутаминовой кислоте «работает» почти весь мозг. Прочие, описанные в предыдущих статьях, нейромедиаторные системы имели более или менее узкую специфику — например, дофаминовая влияла на наши движения и мотивацию [2].

В случае с глутаматом такого не происходит — слишком широко и неизбирательно его влияние на процессы внутри мозга. Сложно выделить какую-то конкретную функцию, кроме возбуждающей. По этой причине приходится говорить о глутаматной системе как о совокупности большого количества связей в головном мозге.

Такую совокупность называют коннектомом. Мозг человека содержит огромное количество нейронов, которые образуют между собой еще большее количество связей. Составить коннектом человека — задача, которая на сегодняшний день науке не под силу. Однако уже описан коннектом червя Caenorhabditis elegans [3] (рис.

 2). Поклонники идеи коннектома утверждают, что в человеческих коннектомах записана наша идентичность: наши личность и память. По их мнению, в совокупности всех связей прячется наше «Я».

Также «связисты» считают, что после описания всех нейронных связей мы сможем понять причину множества психических и неврологических расстройств, а значит и сможем их успешно лечить.

Рисунок 2. Коннектом нематоды Caenorhabditis elegans Каждый нейрон червя имеет свое название, а все связи между нейронами учтены и нанесены на схему. В итоге схема выходит запутаннее, чем карта токийского метро. Рисунок с сайта connectomethebook.com.

Как мне кажется, эта идея перспективна. В упрощённом виде связи между нейронами можно представить в виде проводов, сложных кабелей, соединяющих одни нейроны с другими. При поражении этих связей — искажении сигнала, обрыве проводов — может происходить нарушение слаженной работы головного мозга.

Такие болезни, возникающие при сбое в нейронных каналах связи, называются коннектопатиями. Термин новый, но за ним скрываются уже известные ученым патологические процессы. Если вам хочется узнать о коннектомах больше, рекомендую прочесть книгу Себастьяна Сеунга «Коннектом.

Как мозг делает нас тем, что мы есть» [4].

Перегрузка сети

Рисунок 3. Структура мемантина. Мемантин является производным углеводорода адамантана (не путайте с адамантом). Рисунок из «Википедии».

В нормально работающем мозге сигналы от нейронов равномерно распределены по всем другим клеткам. Нейромедиаторы выделяются в необходимом количестве, и нет поврежденных клеток.

Однако после инсульта (острое поражение) или при деменции (длительно текущий процесс) из нейронов в окружающее пространство начинает выделяться глутамат. Он стимулирует NMDA-рецепторы других нейронов, и в эти нейроны поступает кальций.

Приток кальция запускает ряд патологических механизмов, что в итоге приводит к гибели нейрона. Процесс повреждения клеток за счет выделения большого количества эндогенного токсина (в данном случае — глутамата) называется эксайтотоксичностью.

Рисунок 4. Действие мемантина при альцгеймеровской деменции. Мемантин снижает интенсивность возбуждающих сигналов, которые приходят от корковых нейронов на ядро Мейнерта.

Ацетилхолиновые нейроны, составляющие эту структуру, регулируют внимание и ряд других когнитивных функций. Уменьшение избыточной активации ядра Мейнерта приводит к уменьшению симптомов деменции.

Рисунок из [6].

Для того чтобы предотвратить развитие эксайтотоксичности или уменьшить ее влияние на течение болезни, можно назначить мемантин. Мемантин — очень красивая молекула-антагонист NMDA-рецепторов (рис. 3). Чаще всего этот препарат назначают при сосудистой деменции и деменции при болезни Альцгеймера.

В норме NMDA-рецепторы заблокированы ионами магния, но при стимуляции глутаматом эти ионы высвобождаются из рецептора, и в клетку начинает проникать кальций. Мемантин блокирует рецептор и препятствует прохождению ионов кальция в нейрон — лекарство оказывает свое нейропротективное действие, снижая общий электрический «шум» в сигналах клетки.

При альцгеймеровской деменции, помимо глутамат-опосредованных проблем, снижается уровень ацетилхолина — нейромедиатора, участвующего в таких процессах как память, обучение и внимание.

В связи с этой особенностью болезни Альцгеймера психиатры и неврологи используют для лечения ингибиторы ацетилхолинэстеразы, фермента, который разрушает ацетилхолин в синаптической щели. Использование этой группы лекарств увеличивает содержание ацетилхолина в мозге и нормализует состояние пациента [5].

Специалисты рекомендуют совместное назначение мемантина и ингибиторов ацетилхолинэстеразы для более эффективной борьбы с деменцией при болезни Альцгеймера [6]. При совместном применении этих препаратов происходит воздействие сразу на два механизма развития болезни (рис. 4).

Деменция — это растянутое по времени поражение головного мозга, при котором гибель нейронов происходит медленно. А бывают заболевания, приводящие к быстрому и большому по объему поражению нервной ткани. Эксайтотоксичность — важный компонент повреждения нервных клеток при инсульте.

По этой причине при нарушениях мозгового кровообращения применение мемантина может быть оправданно, однако исследования на эту тему только начинаются. В настоящее время есть работы, проведенные на мышах, где показано, что назначение мемантина в дозе 0,2 мг/кг в день уменьшает объем поражения мозга и улучшает прогноз инсульта [7].

Возможно, дальнейшие работы на эту тему позволят усовершенствовать терапию инсультов у людей.

Голоса в голове

Шизофрения — это еще одно заболевание, при котором воздействие на глутаматную систему мозга является новым и перспективным направлением терапии. В настоящее время главной причиной развития шизофрении считают нарушение дофаминовой передачи в мозге.

Избыток дофамина в одних частях нервной системы приводит к бреду и галлюцинациям, а недостаток в других — к апатии, подавленности и отсутствию побуждений. Нейролептики — лекарства, блокирующие дофаминовые рецепторы — хорошо справляются с галлюцинациями и бредом, но с другой группой симптомов возникают проблемы.

Ограниченность клинического эффекта нейролептиков указывает на то, что в развитие шизофрении могут быть вовлечены другие нейромедиаторные системы.

Если глутаматная система задействована при шизофрении, то можно проверить это даже на здоровых людях. Если здоровым испытуемым вводить препараты, блокирующие действие глутамата (кетамин, амфетамин), то у них развиваются симптомы шизофрении [8].

Введение кетамина больным шизофренией приводило к повторному возникновению психоза с повторением типичных для пациента симптомов, то есть кетамин вызывал не «просто психоз», а возвращал галлюцинации и бред, которые были раньше [9].

Это противоречие двух гипотез усложняет и без того непростую картину нейробиологических основ шизофрении. Психотическую симптоматику при введении кетамина можно объяснить его способностью влиять и на дофаминовые рецепторы.

Другим объяснением может быть то, что дофаминовые и глутаматные нейроны способны оказывать влияние на полосатое тело. Эта часть мозга активно задействована в «производстве» галлюцинаций [10].

Самые частые галлюцинации у пациентов с шизофренией — слуховые: больной слышит «голоса» в своей голове. Голос может ругать, комментировать происходящее вокруг, в том числе и действия пациента.

У одной из моих пациенток «голоса» читали вывески магазинов на улице, где она шла; другая услышала, как голос произнес: «Получишь пенсию, и пойдем в кафе». В настоящее время существует теория, объясняющая возникновение таких . Представим, что пациент идет по улице. Он видит вывеску, а мозг автоматически «прочитывает» ее.

При повышенной активности в височной доле, отвечающей за слуховое восприятие, у пациента возникают слуховые ощущения. Они могли бы подавляться за счет нормальной работы участков лобной коры, но этого не происходит из-за снижения их активности (рис. 5).

Избыточная активность слуховой коры может быть вызвана гиперфункцией глутаматной (возбуждающей) системы или дефектом ГАМКергических структур, отвечающих за нормальное торможение в мозге человека. Вероятнее всего, недостаточная активность лобной доли в случае шизофрении также связана с нарушением нейромедиаторного баланса.

Рассогласованность действий приводит к тому, что человек начинает слышать «голоса», которые явно соотносятся с окружающей обстановкой или передают его мысли. Очень часто свои мысли мы «проговариваем» в голове, что тоже может быть источником «» в мозге человека, больного шизофренией [11].

Рисунок 5. Возникновение слуховых галлюцинаций в мозге пациента с шизофренией.

Первичное ощущение от автоматического «прочтения» вывесок или при возникновении мыслей, локализованное в височной коре (1), не подавляется лобной корой (2).

Теменная кора (3) улавливает возникший паттерн активности в головном мозге и смещает на него фокус активности. В итоге человек начинает слышать «голос». Рисунок из [12].

На этом наше путешествие в мир нейромедиаторов закончено. Мы познакомились с мотивирующим дофамином, успокаивающей γ-аминомасляной кислотой и еще четырьмя героями нашего мозга. Интересуйтесь своим мозгом — потому что, как гласит название книги Дика Свааба, мы — это наш мозг.

  1. Meldrum B.S. (2000). Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J. Nutr. 130, 1007S–1015S;
  2. Дофаминовые болезни;
  3. Varshney L.R., Chen B.L., Paniagua E., Hall D.H., Chklovskii D.B. (2011). Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 7 (2), e1001066;
  4. Сеунг С. Коннектом. Как мозг делает нас тем, что мы есть. М.: Бином, 2014 — 440 с.;
  5. Молекула здравого ума;
  6. Parsons C.G., Danysz W., Dekundy A., Pulte I. (2013). Memantine and cholinesterase inhibitors: complementary mechanisms in the treatment of Alzheimer’s disease. Neurotox. Res. 24, 358–369;
  7. Trotman M., Vermehren P., Gibson C.L., Fern R. (2015). The dichotomy of memantine treatment for ischemic stroke: dose-dependent protective and detrimental effects. J. Cereb. Blood Flow Metab. 35, 230–239;
  8. Krystal J.H., Perry E.B. Jr, Gueorguieva R., Belger A., Madonick S.H., Abi-Dargham A. et al. (2005). Comparative and interactive human psychopharmacologic effects of ketamine and amphetamine. Implications for glutamatergic and dopaminergic model psychoses and cognitive function. Arch. Gen. Psychiatry. 62, 985–995;
  9. Lahti A.C., Koffel B., LaPorte D., Tamminga C.A. (1995). Subanesthetic doses of ketamine stimulate psychosis in schizophrenia. Neuropsychopharmacology 13, 9–19;
  10. Rolland B., Jardri R., Amad A., Thomas P., Cottencin O., Bordet R. (2014). Pharmacology of hallucinations: several mechanisms for one single symptom? Biomed. Res. Int. 2014, 307106. doi: 10.1155/2014/307106;
  11. Hugdahl K. (2015). Auditory hallucinations: A review of the ERC “VOICE” project. World J. Psychiatr. 5, 193–209;
  12. Hugdahl K., Løberg E.-M., Nygård M. (2009). Left temporal lobe structural and functional abnormality underlying auditory hallucinations in schizophrenia. Front. Neurosci. 3, 34–45..

Источник: https://biomolecula.ru/articles/ochen-nervnoe-vozbuzhdenie

Глутамат, Разгон Мозга!

Ионотропные и метаботропные

Всем привет! Это проект clevermindru.   Замечали ли вы разницу между людьми в плане скорости мышления? Задумывались ли вы над тем, почему одних некоторые считают «тормозами», про других же говорят: «схватывают на лету».

Организм – это сложная штука и всех параметров не учесть, быть может, один человек просто устал или грезит о чем-то своем, а мы ошибочно считаем, что он медленно соображает.

Тем не менее, миру известно  2 основных нейромедиатора, баланс между которыми бывает, генетически сдвинут в ту или иную сторону.

Это нейромедиатор торможения – ГАМК и медиатор возбуждения – Глутамат, они разные по направлению и все же создаются из одного и того же вещества – Глутаминовой кислоты. У каждого есть свои плюсы и минусы, иначе природа бы «подчистила» словно веником, неэффективные составляющие организма.

Глутамат присутствует и в продуктах питания и используется в промышленности. Известная пищевая добавка – глутамат натрия, неспроста получила такое название, действуя через этот самый нейромедиатор, она заставляет мозг верить, что еда вкусная. Без этой добавки, пища казалась бы куда менее приятна.

Как работает глутамат?

Поверхностное объяснение — ускорение передачи сигналов между нервным клетками, опосредованно, заставляет быстрее думать и действовать.

Нервные клетки передают сигналы от одного к другому, таких цепочек в мозге миллионы.

Каждая цепочка за что-то отвечает, например, чтобы увидеть что-либо и среагировать, задействуются сначала сетчатка и зрительный нерв, затем кора, затем эта цепочка продолжается до конечного движения определенной части тела. Глуматат деполяризует нервные клетки, словно магнит.

Когда магнит прислонять к металлу, то одним полисом он будет отталкиваться, другим – притягиваться. Наш сегодняшний медиатор будет так менять полярность в клетках, что все сигналы будут убыстряться.

Глутамат ускоряет передачу, действуя двумя путями, ионотропным и метаботропным. Ионотропный работает быстрее, метаботропный – дольше. Это как 2 вида стимуляции мозга: быстро, но недолго, либо медленнее, но дольше.

Копнем еще глубже, как это происходит!

Напомним, что медиаторы выделяются одним нейроном и взаимодействуют со своими рецепторами на поверхности второго нейрона. Рецепторы – это двери во вторую нервную клетку.

  1. Для активации ионотропного пути, глутамат влияет на:
    • NMDA-рецепторы. Рецепторы, которые в обычном, спокойном состоянии «закрыты на замок» ионом Магния. Но стоит прорваться в синаптическую щель нейромедиатору глутамату, как этот замок спадает и рецептор «открывается». Происходит деполяризация, возвращаемся к нашему примеру с магнитом. Из 2-го нейрона через эту дверь выходят ионы кальция и калия, а заходит внутрь натрий. Это есть ускорение передачи импульсов в головном мозге через NMDA-receptors и приводит оно к синаптической пластичности, к изменению силы связей между нервными клетками. Этот процесс напрямую связан с хорошим интеллектом.

Аминокислота глицин тоже способна активировать эти рецепторы, но точные дозировки остаются не понятными (http://www.jneurosci.org/content/13/3/1088.full.pdf)

  • AMPA-рецепторы. Это очень перспективный путь для создания ноотропов. Подробнее смотрите в выпуске по АМПАкинам. Суть в открытии 2-й двери для глутамата, наравне с NMDA-рецепторами.
  • Каинатные рецепторы. Их роль в организме плохо изучена, их меньше чем NMDA и AMPA рецепторов, однако, пропускная способность ионов натрия и калия сопоставима с AMPAрецепторами глутамата. Тоесть активация этих рецепторов тоже приводит к ускорению передачи сигналов в мозге. Вот только скорость с которой, деполяризуруется постсинаптический нейрон низкая.
  1. Для активации метаботропного пути, глутамат влияет на mGlu-рецепторы. Которые делятся на три группы и 8 подтипов. Их основные отличия от ионотропных – другой механизм действия и более длительный потенциал(ионотропные активируется на несколько милисекунд, но часто, метаботропные от секунд до нескольких минут.)
    • Группа 1 (mGluR1, mGluR5). Увеличивает активность NMDA-рецепторов. При чрезмерной активации возможен процесс эксайтотоксичность – гибель нейронов.
    • Группа 2 (mGluR2, mGluR3). Снижает активность NMDA.
    • Группа 3 (mGluR4, mGluR6, mGluR7, mGluR8). Снижает активность NMDA.

Плюсы:

+ Увеличивается скорость мышления

+ Проще и легче что-либо запомнить (долговременная потенциация)

+ Можно успеть больше за короткое время

Минусы:

— Импульсивность

— Беспокойство/стресс

— Эксайтотоксичность

Как увеличить выработку глутамата натурально?

Прежде всего, нужно получать материал – Глутаминовую кислоту, из которой и будет создаваться глутамат. Это в основном сыры, мясо и рыба. Однако, из этой кислоты образуется и ГАМК! Изначально, эту пропорцию определяет сам организм. Сегодня достоверно известен один путь повышение глутамата – стресс и зубрежка!

Добавки для увеличения глутамата:

— Ноотропы-АМПАкины

— Цистеин

— Гомоцистеин

— Глутаминовая кислота (глутамин)

— Аспаргиновая кислота

— Кальций

— Цинк, в дозировках более 40 мг в сутки

Добавки для снижения глутамата:

— Любые добавки с ГАМК-активностью (ГАМК, Амминалон, Фенибут, Тианин)

— Витамин б6 (http://www.holistichelp.net/blog/how-to-increase-gaba-and-balance-glutamate/)

Интересный момент

Шизофрения, аутизм и обычные судороги есть одна из причин чрезмерного действия глутамата в нервной системе.

При высоких уровнях он постоянно ускоряет передачу сигналов и человек не то, что начинает быстрее соображать, его мозг начинает еще и «додумавать» что-то от себя. Так же это убивает нервные клетки и мозг умирает.

Поэтому важно понять: больше стимуляции – не значит лучше! А норма активности глутамата у всех своя и определяется исходя из своих собственных ощущений.

Итог:

— Глутамат ускоряет передачу сигналов в мозге и, в целом, по телу, в этом есть его основное преимущество и его недостаток.

— Он полезен, когда нужна скорость, и мы можем пожертвовать при этом качеством.

— Работает через ионотропные и метаботропные рецепторы.

— Ноотропы-АМПАкины, кальций и цинк увеличивают его количество, лекарства с ГАМК активностью – снижают.

Надеюсь, выпуск будет для вас полезен, до скорого!

Насколько вам понравилась статья?

(57 votes, average: 9,60 10)

Источник: https://clevermind.ru/glutamat-razgon-mozga/

Глутаминовая кислота и мозг: NMDA-рецепторы

Ионотропные и метаботропные

Глутаминовая кислота (глутамат) – аминокислота, которая обеспечивает работу центральной нервной системы.

В головном мозге концентрация глутамата в 80 раз больше, чем в сыворотке крови, и недаром, ибо с его помощью передается до 60% нервных импульсов.

Она может как образовываться в самом головном мозге, так и поступать в вещество мозга из крови через гемато-энцефалический барьер. Поступающая с пищей глутаминовая кислота проходит ряд трансформаций, не проникая непосредственно в головной мозг.

В центральной нервной системе глутаминовая кислота выполняет следующие функции:

  1. Медиаторную – является веществом-посредником в передаче сигнала с одной нервной клетке на другую
  2. Энергетическую – снабжает нервные клетки энергией, необходимой для работы
  3. Антитоксическую – связывает аммиак – ядовитое вещество, образующееся в процессе работы клеток
  4. Синтетическую – является веществом-предшественником для образования других веществ, важных в работе нервных клеток, в первую очередь тормозного нейромедиатора ГАМК – γ-аминомасляной кислоты

Глутаминовая кислота – нейромедиатор

Нейромедиаторы – вещества, которые помогают проводить сигнал от одного нейрона  к другому через расщелину, которую называют синапсом. По нейрону сигнал бежит в виде электрического импульса, но чтобы преодолеть синапс электрический сигнал должен быть преобразован в химический.

На кончике нервного отростка, передающего сигнал, запасены химические вещества – медиаторы или проводники. Когда импульс достигает окончания отростка, он освобождает медиатор, который плывет через синаптическую щель к другому нервному окончанию, принимающему сигнал, возбуждая в нем электрический ток.

Освобожденный медиатор сразу же расщепляется ферментами, а в нервной клетке он образовывается наново из заготовок, плавающих в межклеточном пространстве.

Глутаминовая кислота — это  возбуждающий нейромедиатор, т.е.  она  усиливает нервный импульс.

В центральной нервной системе имеется порядка миллиона клеток, заточенных на принятие сигналов через глутамат (глутаматергических нейронов).

Эти клетки расположены  в коре головного мозга, гиппокампе,  черной субстанции,  обонятельной луковице, мозжечке, а также в спинном мозге, где принимают сигналы от чувствительных окончаний

Глутаматергическая система неспецифична, т.е. невозможно выделить конкретную функцию, которую выполняет глутаминовая кислота, но в то же время она участвует в работе головного мозга в целом. Глутаминовая кислота связывает в единое целое огромное количество нейронов (нервных клеток) головного мозга.

Глутаминовая кислота  участвует не только в классическом проведении сигнала  от нейрона к нейрону, но и в объемной нейротрансмиссии, когда импульс  передается сразу на несколько нервных окончаний путем суммации глутамата, освобожденного из соседних клеток, что способствует формированию разлитого возбуждения, иначе говоря, доминантного очага.  В нормальных условиях это способствует концентрации внимания на каком-либо одном деле, сосредоточенности на достижении цели.

Глутаминовая кислота играет роль в развитии нервной системы. Она способствует образованию новых отростков нейронов и установлению новых связей между ними, т.е. участвует в таких процессах, как обучение и память.

Глутаматные рецепторы

Рецепторы – это своего рода двери, закрывающие вход в клетку. Ключом к замку  является сигнальная молекула – медиатор, которая взаимодействует с рецептором, он открывает дверь, куда заходят вещества, заставляющие клетку реагировать на сигнал. Для глутаматных рецепторов таким ключом являются глутаминовая кислота и аспарагиновая кислота.

В нейронах имеются два вида рецепторов, реагирующих на выброс глутамата: ионотропные и метаботропные (mGLuR 1-8).

Ионотропные рецепторы в ответ на присоединения лиганда, т.е. сигнальной молекулы, открывают «двери» клетки для ионов, т.е. заряженных частиц, которые меняют заряд клетки, вызывая таким образом «потенциал действия», т.е. направленный электрический ток.

Метаботропные рецепторы вызывают перестройку внутри самой клетки.

Эффект при стимуляции ионотропных рецепторов возникает быстро, но держится недолго, это рецепторы немедленного ответа, эффект от стимуляции метаботропных рецепторов возникает через определенное время, но держится дольше. Ионотропные активируются на несколько миллисекунд, но часто, метаботропные могут сохранять активность нейрона от секунд до нескольких минут.

Группа ионотропных рецепторов делится на три семейства: NMDA- рецепторы, AMPA-рецепторы и каинатные рецепторы (рецепторы каиновой кислоты).

Группа метаботропных рецепторов также делится на три группы: I, II, III.

Ионотропные рецепторы

NMDA-рецепторы назвали так  поскольку веществом, избирательно их возбуждающим, (селективным агонистом) является N-метил-D-аспартат, т.е. аспарагиновая кислота, к которой прицепился метильный хвост.

Для AMPA-рецепторов таким веществом является α – аминометилизоксазолпропионовая кислота.

Каинатные рецепторы избирательно стимулируются каиновой кислотой. Она  содержится в красных водорослях и используется в науке для моделирования эпилепсии и болезни Альцгеймера.

По последним данным δ-рецепторы, которые расположены в мозжечке млекопитающих в клетках Пуркинье , также  стали причислять к ионотропным.

Механизм действия всех ионотропных рецепторов схож. Лучше всего он изучен на примере NMDA-рецепторов.

NMDA-рецепторы

NMDA-рецепторы регулируют возбудимость нервной ткани и оказывают влияние на формирование новых связей между нейронами (синаптическая пластичность).

Дверь в клетку, которую представляет собой NMDA-рецептор, имеет сложную структуру: она состоит из четырех частей – субъединиц-белков, два из которых являются представителями класса NR1, а два других – представителями класса NR2.

Внеклеточная часть белка NR2 – это замок на двери, который открывается медиатором. Ключом к замку являются глутамат, аспартат   и N-метил-D-аспартат. Белок NR1 выполняет роль стопора, отодвигает стопор аминокислота глицин.

Чтобы замок открылся, к каждой субъединице должен подойти свой ключ, т.е. рецептор заработает, когда к нему присоединится сразу две молекулы медиатора и коагонист Глицин.

  Это как замок банковской ячейки, который открывается при наличии сразу трех ключей.

Глутаминовая и аспарагиновая кислоты  не являются дефицитными, люди потребляют их в огромных количествах с пищей, к тому же они могут образовываться  в самом организме, глицин – вроде бы тоже заменимая аминокислота, но для ее синтеза необходима фолиевая кислота (витамин B9), а вот ее в наших северных широтах мы можем не добрать, ибо содержится она в свежей зелени. Вспомните, когда и сколько вы съели зеленой травки? Веточку укропчика на колбаске? Вот для того, чтобы восполнить дефицит глицина и продается коммерческий препарат под тем же названием, который помогает работать NMDA-рецепторам и опосредованно, через открытие ионных каналов,  улучшает память, обучаемость и интеллект.

Четыре белка формируют канал для проведения ионов через клеточную мембрану внутрь клетки. Внутри канала врастопырку стоит ион Магния – этакая задвижка, не пускающая ионы.

При присоединении медиатора (глутамата или аспартата) и аминокислоты-регулятора (глицина) канал начинает работать: ион Магния выходит наружу, задвижка отодвигается, внутрь клетки начинают поступать ионы Кальция и Натрия, а из клетки в межклеточное пространство выходит Калий.

В результате направленного движения ионов в принимающем нейроне возникает электрический ток, что приводит к ускорению передачи импульсов, а значит, головной мозг работает быстрее.

После того, как глутамат подействовал, специальные клетки-изоляторы нервного волокна, именуемые астроцитами, поглощают его из межклеточного пространства при  помощи транспортного белка GLT1.

В астроцитах глутамат захватывает аммиак, токсичное вещество, которое всегда выделяется при работе, превращается в глутамин и в таком виде возвращается в нервное окончание, где он вновь готов к работе.

В канале, проходящем через мембрану клетки, имеются дополнительные места для присоединения регуляторных молекул, которые могут как ускорять движение заряженных частиц, так и блокировать их. Анестетик Кетамин работает, как смазка рецепторной двери, облегчая прохождение ионов через канал.

Внутриклеточная часть NMDA-рецептора является регуляторной, тут постоянно снуют ферменты, навешивая  на канал дополнительные замки из остатков фосфорной кислоты или срезая их, что замедляет или ускоряет проведение ионов по каналу. Таким образом осуществляется тонкая настройка скорости движения ионов, а значит и скорости нервных процессов.

Этиловый спирт, содержащийся в алкогольных напитках, блокирует NMDA-рецепторы, т.е. выступает, как стопор, не дает им работать. Во внутриутробном периоде это приводит к гибели нейронов, что в дальнейшем может сказаться и на интеллекте, и на памяти.

В мозге новорожденных и молодых особей в составе  NMDA-рецептора преобладает субъединица, образованная белком NR2B. Каналы, содержащие этот белок, остаются в открытом положении дольше, а нейроны с такими рецепторами быстрее реагируют на сигнал и длительнее находятся в рабочем режиме, что формирует быстрое и долговременное запоминание.

Однако с возрастом субъединицы NR2B  заменяются на NR2C и NR2A, что влияет на способность к обучению: информация воспринимается труднее, память работает хуже.

Однако клетки с NR2B-субъединицами быстро погибают при перегрузке рецептора глутаматом, который в высоких концентрациях ядовит для нервной ткани, а вот белок NR2A защищает нейроны от токсического действия избытка глутамата.

NMDA-рецепторы не участвуют в возникновении быстрого и кратковременного возбуждения, с которыми связаны двигательные автоматизмы (например, рефлекс отдергивания), за них ответственны другие ионотропные рецепторы, прежде всего AMPA. NMDA-рецепторы заняты другой работой: обеспечивают усиленную и длительную активацию нейронов, что имеет значение при обучении и запоминании новой информации.

Существует гипотеза, что кратковременная память – суть ионные структуры, поэтому, чем сильнее сигнал, тем лучше кратковременная память. Ионные структуры нестойки, быстро разрушаются, что приводит к забыванию, «стиранию» информации из памяти.

Наибольшая плотность NMDA-рецепторов имеется в конечном мозге, прежде всего в гиппокампе, миндалевидном теле, полосатом теле, а также в коре больших полушарий.

Гиппокамп – зона памяти, миндалевидное тело – зона эмоций и памяти, связанной с эмоциональными событиями, полосатое тело (стриатум) – регулирует мышечный тонус, объединяет в одно целое функционирование скелетной мускулатуры и внутренних органов. Кора головного мозга формирует человеческую личность и контролирует все процессы, происходящие в организме.

Концентрация NMDA-рецепторов выше в ассоциативных зонах мозга, т.е. тех отделах, которые объединяют разные зоны коры  между собой, по сравнению с проекционными зонами, т.е. тех, которые отдают приказы от головного мозга на двигательную мускулатуру.

В коре головного мозга NMDA-рецепторы сосредоточены в большей степени в следующих зонах:

  • Фронтальной – зона, ответственная за волю, мотивацию, социальное поведение
  • Инсула (островок) – отвечает за глубинные эмоции и речь
  • Древняя кора – осуществляет эмоциональный контроль за поведением
  • Парагиппокампальная извилина – участвует в формировании эмоций, обучения и памяти
  • Передняя поясная кора – зона, ответственная за анализ информации, решение интеллектуальных задач, связанных с концентрацией внимания, управляет поведением.

Это структуры обеспечивают способности к восприятию и переработке информации, формируют память, обеспечивают способность к запоминанию и обучению, сосредоточению, управляют волей и мотивацией, отвечают за социальное поведение и эмоциональные реакции.

Сбои в работе NMDA-рецепторов приводят к множеству тяжелых неврологических и психических нарушений, таких как  эпилепсия, аутизм, шизофрения.

Продолжение здесь: http://zaryad-zhizni.ru/glutaminovaya-kislota-i-mozg-2/

Источник: https://zaryad-zhizni.ru/glutaminovaya-kislota-i-mozg-1/

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: