Ионные механизмы постсинаптических потенциалов

Физиология процессов межклеточной передачи возбуждения

Ионные механизмы постсинаптических потенциалов

Функцию быстрой передачи возбуждения к нервной клетке и от нее выполняют ее отростки – дендриты и аксоны, т.е. нервные волокна. В зависимости от структуры их делят на мякотные, имеющие миелиновую оболочку, и безмякотные.

Эта оболочка формируется шванновскими клетками, являющиеся видоизмененными глиальными клетками. Они содержат миелин, который в основном состоит из липидов. Он выполняет изолирующую и трофическую функции. Одна шванновская клетка образует оболочку на 1 мм нервного волокна.

Участки, где оболочка прерывается, т.е. не покрыты миелином, называют перехватами Ранвье. Ширина перехвата 1 мкм.

Функционально все нервные волокна делят на три группы:

1. Волокна типа А – это толстые волокна, имеющие миелиновую оболочку. В эту группу входят 4 подтипа:

  • альфа – двигательные волокна скелетных мышц и афферентные нервы, идущие от мышечных веретен – рецепторов растяжения. Скорость проведения 70-120 м/с.
  • бета – афферентные волокна, идущие от рецепторов давления и прикосновения кожи. Скорость 30-70 м/с.
  • гамма – эфферентные волокна, идущие к мышечным веретенам (15-30 м/с).
  • дельта – афферентные волокна от температурных и болевых рецепторов кожи (12-30 м/с).

2. Волокна группы В – тонкие миелинизированные волокна, являющиеся преганглионарными волокнами вегетативных эфферентных путей. Скорость проведения 3-18 м/с.

3. Волокна группы С – безмиелиновые постганглионарные волокна вегетативной нервной системы. Скорость 0,5 -3 м/с.

Проведение возбуждения по нервам подчиняется следующим законам:

  1. Закон анатомической и физиологической целостности нерва. Т.е. нерв способен выполнять свою функцию лишь при обоих этих условиях. Первый нарушается при перерезке, второй – при действии веществ, блокирующих проведение, например, новокаина.
  2. Закон двустороннего проведения возбуждения. Оно распространяется в обе стороны от места раздражения. В организме чаще всего возбуждение по афферентным путям идет к нейрону, а по эфферентным – от нейрона. Такое распространение называется ортодромным. Очень редко возникает обратное, или антидромное, распространение возбуждения.
  3. Закон изолированного проведения. Возбуждение не передается с одного нервного волокна на другое волокно, входящее в состав этого же нервного ствола.
  4. Закон бездекрементного проведения. Возбуждение проводится по нервам без декремента, т.е. без затухания. Следовательно, нервные импульсы не ослабляются, проходя по нервам.
  5. Скорость проведения прямо пропорциональна диаметру нерва. (Нервные волокна обладают свойствами электрического кабеля, у которого не очень хорошая изоляция). В основе механизма проведения возбуждения лежит возникновение местных токов. В результате генерации ПД в аксонном холмике и реверсии мембранного потенциала, мембрана аксона приобретает противоположный заряд. Снаружи она становится отрицательной, внутри положительной. Мембрана нижележащего, невозбужденного участка аксона заряжена противоположным образом. Поэтому между этими участками, по наружной и внутренней поверхностям мембраны начинают проходить местные токи. Эти токи деполяризуют мембрану нижележащего невозбужденного участка нерва до критического уровня и в нем также генерируется ПД. Затем процесс повторяется и возбуждается более отдаленный участок нерва и т.д.

Т.к. по мембране безмякотного волокна местные токи текут не прерываясь, то такое проведение называется непрерывным. При непрерывном проведении местные токи захватывают большую поверхность волокна, поэтому им требуется, длительное время для прохождения по участку волокна. В результате дальность и скорость проведения возбуждения по безмякотным волокнам небольшая.

В мякотных волокнах участки, покрытые миелином, обладают большим электрическим сопротивлением. Поэтому непрерывное проведение ПД невозможно. При генерации ПД местные токи текут лишь между соседними перехватами.

По закону “все или ничего” возбуждается ближайший к аксонному холмику перехват Ранвье, затем соседний нижележащий перехват и т.д. Такое проведение называется сальтаторным (прыжком).

При этом механизме ослабления местных токов не происходит и нервные импульсы распространяются на большое расстояние и с большой скоростью.

Синаптическая передача. Строение и классификация синапсов

Синапсом называется место контакта нервной клетки с другим нейроном или исполнительным органом. Все синапсы делятся на следующие группы:

1. По механизму передачи:

а. электрические. В них возбуждение передается посредством электрического поля. Поэтому оно может передаваться в обе стороны. Их в ЦНС мало;

б. химические. Возбуждение через них передается с помощью ФАВ – нейромедиатора. Их в ЦНС большинство;

в. смешанные (электрохимические).

2. По локализации:

а. центральные, расположенные в ЦНС;

б. периферические, находящиеся вне ее. Это нервно-мышечные синапсы и синапсы периферических отделов вегетативной нервной системы.

3. По физиологическому значению:

а. возбуждающие;

б. тормозные.

4. В зависимости от нейромедиатора, используемого для передачи:

а. холинергические – медиатор ацетилхолин (АХ);

б. адренергические – норадреналин (НА);

в. серотонинергические – серотонин (СТ);

г. глицинергические – аминокислота глицин (ГЛИ);

д. ГАМК-ергические – гамма-аминомасляная кислота (ГАМК);

е. дофаминергические – дофамин (ДА);

ж. пептидергические – медиаторами являются нейропептиды. В частности роль нейромедиаторов выполняют вещество Р, опиоидный пептид в-эндорфин и др.

Предполагают, что имеются синапсы, где функции медиатора выполняют гистамин, АТФ, глутамат, аспартат, ряд местных пептидных гормонов.

5. По месту расположения синапса:

а. аксо-дендритные (между аксоном одного и дендритом второго нейрона);

б. аксо-аксональные;

в. аксо-соматические;

г. дендро-соматические;

д. дендро-дендритные.

Наиболее часто встречаются три первых типа.

Строение всех химических синапсов имеет принципиальное сходство. Например, аксо-дендритный синапс состоит из следующих элементов:

  1. пресинаптическое окончание или терминаль (конец аксона);
  2. синаптическая бляшка, утолщение окончания;
  3. пресинаптическая мембрана, покрывающая пресинаптическое окончание;
  4. синаптические пузырьки в бляшке, которые содержат нейромедиатор;
  5. постсинаптическая мембрана, покрывающая участок дендрита, прилегающий к бляшке;
  6. синаптическая щель, разделяющая пре- и постсинаптическую мембраны, шириной 10-50 нМ;
  7. хеморецепторы – белки, встроенные в постсинаптическую мембрану и специфичные для нейромедиатора.

Например, в холинергических синапсах это холинорецепторы, адренергических – адренорецепторы и т.д.

Простые нейромедиаторы синтезируются в пресинаптических окончаниях, пептидные – в соме нейронов, а затем по аксонам транспортируются в окончания.

Механизмы синаптической передачи. Постсинаптические потенциалы

Медиатор, находящийся в пузырьках, выделяется в синаптическую щель с помощью экзоцитоза (пузырьки подходят к мембране, сливаются с ней и разрываются, выпуская медиатор). Его выделение происходит небольшими порциями – квантами. Каждый квант содержит от 1'000 до 10'000 молекул нейромедиатора.

Небольшое количество квантов выходит из окончания и в состоянии покоя. Когда нервный импульс, т.е. ПД, достигает пресинаптического окончания, происходит деполяризация его пресинаптической мембраны. Открываются ее кальциевые каналы и ионы кальция входят в синаптическую бляшку.

Начинается выделение большого количества квантов нейромедиатора. Молекулы медиатора диффундируют через синаптическую щель к постсинаптической мембране и взаимодействуют с еѐ хеморецепторами.

В результате образования комплексов медиатор-рецептор, в субсинаптической мембране начинается синтез так называемых вторичных посредников (в частности, цАМФ). Эти посредники активируют ионные каналы постсинаптической мембраны. Поэтому такие каналы называют хемозависимыми или рецепторуправляемыми. Т.е.

они открываются при действии ФАВ на хеморецепторы. В результате открывания каналов изменяется потенциал субсинаптической мембраны. Такое изменение называется постсинаптическим потенциалом.

В ЦНС возбуждающими являются холин-, адрен-, дофамин-, серотонинергические синапсы и некоторые другие.

При взаимодействии их медиаторов с соответствующими рецепторами, открываются хемозависимые натриевые каналы. Ионы натрия входят в клетку через субсинаптическую мембрану.

Происходит ее местная или распространяющаяся деполяризация. Эта деполяризация называется возбуждающим постсинаптическим потенциалом (ВПСП).

Тормозными являются глицин- и ГАМК-ергические синапсы. При связывании медиатора с хеморецепторами, активируются калиевые или хлорные хемозависимые каналы. В результате ионы калия выходят из клетки через мембрану. Ионы хлора входят через нее. Возникает только местная гиперполяризация субсинаптической мембраны. Она называется тормозным постсинаптическим потенциалом (ТПСП).

Величина ВПСП и ТПСП определяется количеством квантов медиатора, выделившихся из терминали, а, следовательно, частотой нервных импульсов. Т.е. синаптическая передача не подчиняется закону “все или ничего”.

Если количество выделившегося возбуждающего медиатора достаточно велико, то в субсинаптической мембране может генерироваться распространяющийся ПД.

ТПСП, независимо от количества медиатора не распространяется за пределы субсинаптической мембранеы.

После прекращения поступления нервных импульсов, выделившийся медиатор удаляется из синаптической щели тремя путями:

  1. Разрушается специальными ферментами, фиксированными на поверхности субсинаптической мембраны. В холинергических синапсах это ацетилхолинэстераза (АХЭ). В адренергических, дофаминергических, серотонинергических – моноаминоксидаза (МАО) и катехол-О-метилтрансфераза (КОМТ).
  2. Часть медиатора возвращается в пресинаптическое окончание с помощью процесса обратного захвата (значение в том, что синтез нового нейромедиатора – длительный процесс).
  3. Небольшое количество уносится межклеточной жидкостью.

Особенности передачи возбуждения через химические синапсы:

  1. Возбуждение передается только в одном направлении, что способствует его точному распространению в ЦНС.
  2. Они обладают синаптической задержкой – это время, необходимое на выделения медиатора, его диффузию и процессы в субсинаптической мембране.
  3. В синапсах происходит трансформация, т.е. изменение частоты нервных импульсов.
  4. Для них характерно явление суммации. Т.е. чем больше частота импульсов, тем выше амплитуда ВПСП и ТПСП.
  5. Синапсы обладают низкой лабильностью.

Особенности строения периферических синапсов

Периферические синапсы образованы терминалями эфферентных нервов и участками мембран исполнительных органов. Например, нервно-мышечные синапсы образуются окончаниями аксонов двигательных нейронов и мышечными волокнами. Благодаря своеобразной форме они называются нервно-мышечными концевыми пластинками.

Их общий план строения такой же, как у всех химических синапсов, но субсинаптическая мембрана толще и образует многочисленные субсинаптические складки. Они увеличивают площадь синаптического контакта. Медиатором этих синапсов является ацетилхолин. В субсинаптическую мембрану встроены Н-холинорецепторы, т.е.

холинорецепторы, которые помимо АХ могут связываться и с никотином. Взаимодействие ацетилхолина с холинорецепторами приводит к открыванию хемозависимых натриевых каналов и развитию деполяризации.

В связи с тем, что отдельные кванты ацетилхолина выделяется и в состоянии покоя, в постсинаптической мембране нервно-мышечных синапсов постоянно возникают слабые кратковременные всплески деполяризации – миниатюрные потенциалы концевой пластинки (МПКП).

При поступлении нервного импульса, выделяется большое количество АХ и развивается выраженная деполяризация, называемая потенциалом концевой пластинки (ПКП). В отличие от центральных, в нервно-мышечных синапсах ПКП всегда значительно выше критического уровня деполяризации.

Поэтому он всегда сопровождается генерацией ПД и сокращением мышечного волокна. Т.е. для распространяющегося возбуждения и сокращения суммации эффектов квантов нейромедиатора не требуется. Яд кураре и курареподобные препараты, фармакологические препараты резко снижают ПКП и блокируют нервно-мышечную передачу.

В результате выключается вся скелетная мускулатура, в том числе и дыхательная. Это используется для операций с искусственной вентиляцией легких. Разрушение АХ осуществляется ферментом ацетилхолинестеразой. Некоторые фосфороорганические вещества (хлорофос, зарин) инактивируют холинэстеразу. Поэтому АХ накапливается в синапсах, и возникают мышечные судороги.

В клинической практике известно заболевание myasthenIa gravis, при котором уменьшается количество холинорецепторов в концевых пластинках. Это связано с выработкой аутоимунных антител к ним. В результате амплитуда ПКП значительно снижается. Возникают резкая слабость и патологическая утомляемость.

Источник: https://zen.yandex.ru/media/id/5e5e295efc936829ebeee025/fiziologiia-processov-mejkletochnoi-peredachi-vozbujdeniia-5e8763d113cc2b78dcfadace

Синапс. Физиология мышечных волокон

Ионные механизмы постсинаптических потенциалов

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Навигация:

Синапс — это специфическое место контакта двух возбудимых систем (клеток) для передачи возбуждения.

«synapsis» — «соприкосновение, соединение, застежка»

на новости сайта в соцсетях!

Пожалуйста, примите участие в опросах по оценке качества сайта. Важен каждый голос!

По способу передачи сигналов:

  • механические,
  • химические,
  • электрические.

По виду медиатора: холинэргические и др.

Нервно-мышечный синапс (НМС) — химический, передача с помощью медиатора ацетилхолина.

Синонимы к слову НМС:

  • Нервно-мышечное соединение;
  • Моторная концевая пластинка.

Аксоны нервных клеток на своих окончаниях теряют миелиновую оболочку, ветвятся, и концевые веточки аксона утолщаются. Это пресинаптическая терминаль или бляшка или пуговка, которая погружается в углубление на поверхности мышечного волокна.

Покрывающая концевую веточку аксона поверхностная мембрана называется пресинаптической мембраной, т.е. это мембрана, покрывающая поверхность синаптической бляшки (терминали аксона).

Мембрана, покрывающая мышечное волокно в области синапса, называется постсинаптической мембраной, или концевой пластинкой. Она имеет извитую структуру, образуя многочисленные складки, уходящие вглубь мышечного волокна, за счет чего увеличивается площадь контакта.

На постсинаптической мембране находятся белковые структуры — рецепторы, способные связывать медиатор. В одном синапсе количество рецепторов достигает 10-20 млн.

Между пре- и постсинаптическими мембранами находится синаптическая щель, размеры ее в среднем 50 нм, она открывается в межклеточное пространство и заполнена межклеточной жидкостью.

В синаптической щели находится мукополисахаридное плотное вещество в виде полосок, мостиков и содержится фермент ацетилхолинэстераза.

В пресинаптической терминали находится большое количество пузырьков или везикул, заполненных медиатором — химическим веществом посредником, осуществляющим передачу возбуждения.

В нервно-мышечном синапсе медиатор — ацетилхолин (АХ).

АХ синтезируется из холина и уксусной кислоты (ацетил-коэнзима А) с помощью фермента холинэстеразы. Эти вещества перемещаются из тела нейрона по аксону к пресинаптической мембране. Здесь в пузырьках происходит окончательное образование АХ.

3 фракции медиатора:

  1. Первая фракция — доступная — располагается рядом с пресинаптической мембраной.
  2. Вторая фракция — депонированная — располагается над первой фракцией.
  3. Третья фракция — диффузно рассеянная — наиболее удаленная от пресинаптической мембраны.

4 этап

Ионы Ca вызывают образование специального белкового комплекса, который включает в себя везикулу и структуры, расположенные непосредственно около пресинаптической мембраны.

Они связаны между собой так называемыми белками экзоцитоза.

Часть белков расположена на везикулах (синапсин, синаптотагмин, синаптобревин), а часть — на пресинаптической мембране (синтаксин, синапсо-ассоциированный белок). Данный комплекс получил название секретосома.

6 этап

Излитию содержимого пузырька в щель способствует белок синаптопорин, формирующий канал, по которому идет выброс медиатора.

Квант медиатора — количество молекул, содержащихся в одной везикуле.

На 1 ПД выбрасывается 100 квантов АХ.

10 этап

На постсинаптической мембране возникает потенциал концевой пластинки (ПКП). Он является аналогом локального ответа (ЛО).

Потенциал действия на постсинаптической мембране не возникает! Он формируется на соседней мембране мышечного волокна.

Судьба медиатора:

  • связывание с рецептором,
  • разрушение ферментов (ацетилхолинэстеразой),
  • обратное поглощение в пресинаптическую мембрану,
  • вымывание из щели и фагоцитоз.

События в синапсе:

  1. ПД приходит к терминали аксона;
  2. Он деполяризует пресинаптическую мембрану;
  3. Ca2+ входит в терминаль, что приводит к выделению АХ;
  4. В синаптическую щель выделяется медиатор АХ;
  5. Он диффундирует в щель и связывается с рецепторами постсинаптической мембраны;
  6. Меняется проницаемость постсинаптической мембраны для ионов Na+;
  7. Ионы Na+ проникают в постсинаптическую мембрану и уменьшают ее заряд — возникает потенциал концевой пластинки (ПКП).

На самой постсинаптической мембране ПД возникнуть не может, так как здесь отсутствуют потенциалзависимые каналы, они являются хемозависимыми!

  1. ПКП суммируются и достигают КУД на соседнем участке мышечного волокна, что приводит к возникновению ПД и его распространению по мышечному волокну (около 5 м/с).

Достигнув пороговой величины, то есть КУД, ПКП возбуждает соседнюю (внесинаптическую) мембрану мышечного волокна за счет местных круговых токов.

Особенности проведения возбуждения в нервно-мышечном синапсе

Одностороннее проведение возбуждения — только в направлении от пресинаптического окончания к постсинаптической мембране.

Суммация возбуждения соседних постсинаптических мембран.

Синаптическая задержка — замедление в проведении импульса от нейрона к мышце составляет 0,5-1 мс. Это время затрачивается на секрецию медиатора, его диффузию к постсинаптической мембране, взаимодействие с рецептором, формирование ПКП, их суммацию.

Низкая лабильность — она составляет 100-150 имп/с для сигнала, что в 5-6 раз ниже лабильности нервного волокна.

Чувствительность к действию лекарственных веществ, ядов, БАВ, выполняющих роль медиатора.

Утомляемость химических синапсов — выражается в ухудшении проводимости вплоть до блокады в синапсе при длительном функционировании синапса. причина утомляемости — исчерпание запасов медиатора в пресинаптическом окончании.

Законы проведения возбуждения по нервам:

  1. Закон функциональной целостности нерва.
  2. Закон изолированного проведения возбуждения.
  3. Закон двустороннего проведения возбуждения.

В зависимости от скорости проведения возбуждения нервные волокна подразделяются на 3 группы: A, B, C. В группе A выделяют 4 подгруппы: альфа, бетта, гамма и сигма.

Физиология мышечных волокон

Три типа мышц:

  • скелетная (40-50% массы тела),
  • сердечная (менее 1%),
  • гладкая (8-9%).

Физиологические свойства скелетных мышц:

  1. Возбудимость — способность отвечать на действие раздражителя возбуждением.
  2. Проводимость — способность проводить возбуждение из места его возникновения к другим участкам мышцы.
  3. Лабильность — способность мышцы сокращаться в соответствии с частотой действия раздражителя (200-300 Гц для скелетной мышцы).
  4. Сократимость — для мышцы является специфическим свойством — это способность мышцы изменять длину или напряжение в ответ на действие раздражителя.

Физические свойства скелетных мышц:

  1. Растяжимость — способность мышцы изменять длину под действием растягивающей силы.
  2. Эластичность — способность мышцы восстанавливать первоначальную длину или форму после прекращения действия растягивающей силы.
  3. Силы мышц — способность мышцы поднять максимальный груз.
  4. Способность мышцы совершать работу.

Режимы сокращения:

  • Изотонический,
  • Изометрический,
  • Ауксотонический.

Изотонический режим — сокращение мышцы происходит с изменением ее длины без изменения напряжения (тонуса) (напр.: сокращение мышц языка).

Изометрический режим — длина постоянная, увеличивается степень мышечного напряжения (тонуса) (напр.: при поднятии непосильного груза).

Ауксотонический режим — одновременно изменяется длина и напряжение мышцы (характерен для обычных двигательных актов).

Механизм сокращения поперечно-полосатых мышц

Любая скелетная мышца состоит из мышечных волокон, которые, в свою очередь, состоят из множества тонких нитей — миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл — нитей сократительных белков: миозина (миозиновая протофибрилла), актина (актиновая протофибрилла).

Кроме сократительных белков в миофибрилле имеются два регуляторных белка: тропомиозин и тропонин.

Миозиновые волокна соединены в толстый пучок, от которого в торону актиновых нитей отходят поперечные мостики. У каждого мостика выделяют шейку и головку.

Нить актина располагается в виде 2 скрученных ниток бус. На ней имеются актиновые центры.

Тропомиозин в виде спиралей оплетает поверхность актина, закрывая в покое ее центры. Одна молекула тропомиозина контактирует с 7 молекулами актина.

Тропонин образует утолщение на конце каждой нити тропомиозина.

Под влиянием возникшего в мышечном волокне ПД из саркоплазматического ретикулума (СПР — депо Ca2+) высвобождаются ионы Ca. Кальций связывается с тропонином, который смещает тропомиозиновый стержень, что приводит к открытию актиновых центров.

В результате, к актиновым центрам присоединяются головки поперечных миозиновых мостиков.

Эти постики совершают «гребущие движения», в результате чего нити актина перемещаются этими мостиками относительно волокон миозина, происходит укорочение мышцы.

Процесс расслабления происходит в обратной последовательности с использованием энергии АТФ за счет функционирования кальциевого насоса.

При отсутствии повторного импульса ионы Ca не поступают из СПР. В результате отсутствия Ca-тропонинового комплекса, тропомиозин возвращается на свое прежнее место, блокируя актиновые центры актина. Актиновые протофибриллы легко скользят в обратном направлении благодаря эластичности мышцы, и мышца удлиняется (расслабляется).

Гладкие мышцы

Гладкие мышцы — это мышцы, формирующие слой стенок полых внутренних органов. Они построены из веретенообразных одноядерных мышечных клеток без поперечной исчерченности за счет хаотичного расположения миофибрилл.

Особенности гладких мышц:

  • Иннервируются волокнами вегетативной нервной системы (ВНС);
  • Обладают низкой возбудимостью:
  • Обладают низкой величиной МП (мембранного потенциала) — -50 — -60 мВ из-за более высокой проницаемости для ионов Na+
  • ПД (потенциал действия) отличается меньшей амплитудой и большей длительностью. Он формируется в основном за счет ионов Ca2+
  • Медленная проводимость:

Клетки в гладких мышцах функционально связаны между собой посредством щелевидных контактов — нексусов, которые имеют низкое электрическое сопротивление. За счет этих контактов ПД распространяется с одного мышечного волокна на другое, охватывая большие мышечные пласты, и в реакцию вовлекается вся мышца.

Гладкие мышцы способны осуществлять относительно медленные ритмические и длительные тонические сокращения.

Медленные ритмические сокращения обеспечивают перемещение содержимого органа из одной области в другую.

Длительные тонические сокращения, особенно сфинктеров полых органов, препятствуют выходу из них содержимого.

Это способность сохранять приданную им при растяжении или деформации форму. Благодаря пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии.

Особенность гладких мышц, отличающая их от скелетных. Благодаря автоматии гладкие мышцы могут сокращаться в условиях отсутствия иннервации. Важную роль в этом играет растяжение.

Растяжение является адекватным раздражителем для гладкой мускулатуры. Сильное и резкое растяжение гладких мышц вызывает их сокращение.

Сравнительная характеристика скелетных и гладких мышц:

Разделы с похожими страницами

Источник: https://medfsh.ru/teoriya/teoriya-po-normalnoy-fiziologii/lektsii-po-normalnoj-fiziologii/sinaps-fiziologiya-myshechnyh-volokon

Общая нейрофизиология

Ионные механизмы постсинаптических потенциалов
» Справочники » Спецкурсы »

Преподаватель: профессор Латанов А.В.

Программа курса

Введение. Электрические процессы в ЦНС. Основы и функции. Уровни изучения электрических процессов. Способы передачи информации в ЦНС. Истоки современной нейрофизиологии. Эксперименты Л. Гальвани, А. Вольта, К. Маттеуччи. Немецкая школа физиологии XIX века.

Биологические мембраны. Строение, химический состав, электрические и биофизические свойства, функции. Три модели биологических мембран.

Потенциал покоя. Ионные градиенты. Ионный состав цитоплазмы (аксоплазмы) и внеклеточной среды. Мембранная теория Ю. Бернштейна. Равновесный трансмембранный потенциал: ионный механизм, уравнение Нернста. Зависимость трансмембранного потенциала от концентрации ионов.

Потенциал действия. Исследование проводимости мембраны аксона во время потенциала действия (эксперименты К. Коула). Исследование потенциала действия гигантского аксона кальмара (эксперименты А. Ходжкина и А. Хаксли). Натриевая гипотеза механизма потенциала действия.

Метод «фиксации потенциала». Эквивалентная электрическая схема мембраны. Фиксация «пространства», фиксация напряжения. Принципиальная электрическая схема фиксации потенциала. Анализ ионных токов методом «фиксации потенциала» при возбуждении гигантского аксона кальмара.

Уравнение Нернста для потенциала действия. Ионная проводимость в мембране перехвата Ранвье миелинизированного волокна. Сравнение с ионной проводимостью мембраны гигантского аксона кальмара. Механизм инактивации натриевой проводимости (активационные и инактивационные ворота). Цикл А. Ходжкина.

Кривая инактивации натриевой проводимости.

Ионные токи мембран сомы нейронов. Метод внутриклеточного диализа. Мультиионная природа токов во время генерации потенциала действия в соме нервных клеток моллюсков и позвоночных. Ионные механизмы генерации потенциала действия в клетках Пуркинье мозжечка.

Механизм активного транспорта ионов. Биоэнергетика активного транспорта ионов через возбудимые мембраны. Несимметричность активного ионного транспорта. Роль активного транспорта в обмене веществ. Типы ионных насосов.

Ионные каналы. Современные представления о молекулярных механизмах ионной проводимости возбудимых мембран. Потенциал-активируемые Na+-, K+-, Ca2+- и Cl–каналы, их структура. Селективный фильтры и структура Na+- и K+-каналов.

Энергетические профили ионных каналов. Воротные механизмы ионных каналов. Воротный ток (асимметричный ток смещения). Модели электроуправляемого воротного механизма. Применение метода patch-clamp в исследовании ионных каналов.

Принцип анализа ионных токов, проходящих через одиночный канал.

Нейротоксины. Нейротоксины как специфические инструменты для исследования ионных каналов (на примере натриевых каналов). Три фармакологически различных процесса во время потенциала действия.

Потенциал-зависимые ионные токи. Типы потенциал-зависимых ионных токов. Основные принципы классификации ионных токов. Примеры Na+-, K+- и Ca2+-токов. Влияние различных токов на активность нейронов (привести примеры).

Проведение потенциалов в мембранах нервных клеток. Основные типы электрических сигналов в нервных клетках. Рецепторные потенциалы. Пассивное распространение электрических сигналов. Кабельные свойства нервных волокон. Эквивалентная электрическая схема нервного волокна.

Электрические характеристики, определяющие кабельные свойства нервных волокон. Постоянная длины волокна. Постоянная времени мембраны. Ионные токи при распространении потенциала действия в гигантских аксонах. Зависимость скорости проведения возбуждения по нервному волокну от его электрических характеристик.

Скорость проведения возбуждения по немиелинизированным и миелинизированным волокнам. Фактор безопасности нервных волокон. Классификация нервных волокон позвоночных животных по скорости проведения возбуждения. Параметры возбудимости. Пороговый потенциал, пороговый ток, лабильность, аккомодация.

Кривая “сила-длительность”.

Нейроглия. Классификация глиальных клеток. Основные свойства и функции нейроглии. Взаимодействие с нейронами. Физиологические свойства нейроглии у беспозвоночных и позвоночных. Электрические реакции глиальных клеток. Связь колебаний мембранного потенциала глиальных клеток с электрическими реакциями нервных клеток.

Физиология синапсов. Типы нейронных связей. Электрический синапс. Химический синапс. Основные функции химического синапса. Структурные элементы синапса. Последовательность событий при активации химического синапса. Нервно-мышечный синапс. Особенности строения. Исследования Б. Катца синаптической передачи в нервно-мышечном синапсе.

Потенциал реверсии. Холинергический синапс: никотиновый и мускариновый (примеры). Специфические агонисты, антагонисты и блокаторы. Отдельные стадии химической синаптической передачи на примере холинергического синапса. Молекулярный механизм экзоцитоза медиатора из везикул. Белки везикул и пресинаптической мембраны.

Механизмы выделения медиатора из везикул.

Постсинаптические потенциалы. Роль Ca2+ в высвобождении медиатора из синаптического окончания. Возбуждающие постсинаптические потенциалы (ВПСП). Характеристики ВПСП, ионный механизм, равновесный потенциал.

Тормозные постсинаптические потенциалы (ТПСП). Характеристики ТПСП, ионный механизм, равновесный потенциал. Механизмы пресинаптического торможения и его функции. Квантовая гипотеза работы синапса. Закон Пуассона для распределения минПКП.

Квантовая гипотеза для ВПСП и ТПСП.

Медиаторы. Классификация медиаторов по химическому строению, по типу действия на постсинаптическую мембрану, по физиологическому эффекту. Критерии медиаторов. G–белки. Строение, значение, принцип действия (с примерами), типы (с примерами).

Медиаторные системы в центральной нервной системе. Локализация, эфферентация, рецепторы, основные функции, свойства синапсов.

Холинергическая, норадренергическая, адренергическая, дофаминергическая, серотонинергическая, гистаминергическая, глютаминергическая, ГАМК-эргическая, глицинергическая, пуринергическая, пептидергическая системы.

Нейромодуляторы. Определение и специфика физиологического действия. Отличие от нейромедиаторов. Типы модуляций (примеры). Пресинаптическая модуляция – ауторецепторы и гетерорецепторы. Постсинаптическая модуляции – ауторегуляция (положительная и отрицительная) и гетерорегуляция.

Рецепторы постсинаптических мембран. Ионотропные, метаботропные и «промежуточные» рецепторы (примеры).

Особенности химического строения, характеристика (агонисты, анатагонисты), механизм физиологического действия (примеры для всех основных медиаторов): ацетилхолиновые, (нор) адреналиновые, дофаминовые, серотониновые, гистаминовые, глютаматные, ГАМК-рецепторы, глициновые, пуриновые. Рецепторы, обеспечивающие быстрые и медленные постсинаптические потенциалы (ВПСП и ТПСП).

Вторичные посредники. Общая схема внутриклеточных процессов с участием вторичных посредников. Примеры вторичных посредников. Киназы, активируемые через системы вторичных посредников. Механизмы регуляции киназ. Общая схема участия цАМФ в механизме действия медиаторов и гормонов. Каскады реакций, инициируемые Са2+, мембранными липидами, арахидоновой кислотой.

Электрические характеристики нейронов. Эквивалентная электрическая схема мембраны нейрона. Электрические модели нейрона Дж. Экклса и В. Ролла. Зависимость формы ВПСП от удаленности синапсов (физиологические и модельные данные).

Входное сопротивление и пороговый ток мембраны нейрона: их зависимость от особенностей дендрита. Генерация потенциала действия в нейроне. Функциональные части нейрона и их роль в интеграции и проведении нервных сигналов. Ритмический разряд нейронов.

Первичный и вторичный диапазоны частоты разряда нейрона, их значение и свойства (на примере мотонейрона и мышцы). Факторы, регулирующие частоту разряда нейрона.

Элементы теории объемного проводника. Распространяющийся потенциал при возбуждении нерва. Зависимость его конфигурации от способа регистрации. Дипольная модель слоистых мозговых структур. Зависимость распределения потенциала от структурной организации диполей. Электрографический анализ ответа сетчатки на выключение света. Критерии источника электрических колебаний.

Рекомендуемая литература

Основная:

  1. Николс Дж.Г., Мартин А.Р., Валлас Б.Дж., Фукс П.А. От нейрона к мозгу, изд-во «Едиториал УРСС», М., 2003.
  2. Шульговский В.В. Физиология центральной нервной системы, МГУ, М., 1997.
  3. Шепперд Г. Нейробиология, т.1, «Наука», М., 1987.
  4. Тевс Г. , Шмидт Р. Физиология человека в 3 т., «Мир», 2004.
  5. Эккерт Р., Рэнделл Д., Огастин Дж. Физиология животных. Механизмы и адаптация, «Мир», М., 1991.
  6. M.J. Zigmond, F.E. Bloom, S.C. Landis, J.L. Roberts, L.R. Squire Fundamental Neuroscience. Academic Press, 1999, San Diego, London.

Дополнительная:

  1. Ашмарин И.П. Биохимия мозга, изд-во С.-Петербургского ун-та, СПб., 1999.
  2. Гранит Г. Основы регуляции движений, «Мир», М., 1973.
  3. Гусельников В.И. Электрофизиология головного мозга, «Высшая школа», М., 1976.
  4. Катц Б. Нерв, мышца, синапс, «Мир», М., 1968.
  5. Костюк П.Г., Крышталь О.А. Механизмы электрической возбудимости нервной клетки, «Наука», М., 1981.
  6. Руководство по физиологии. Общая физиология возбудимых мембран, «Наука», Л., 1973.
  7. Современные проблемы электрофизиологических исследований, «Медицина», М., 1964:а) Гуляев П.И. Электрофизиология нервного ствола;б) Бызов А.Л. Особенности микроэлектродного отведения биоэлектрических потенциалов;

    в) Ройтбак А.И. Вызванные потенциалы коры больших полушарий.

  8. Ходжкин А. Нервный импульс, «Иностранная литература», М., 1965.
  9. Хухо Ф. Нейрохимия. Основы и принципы, «Мир», М., 1990.
  10. Экклс Дж. Физиология синапсов, «Мир», М., 1968.

Источник: https://neurobiology.ru/dict/view.php?ID=15

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: