Интегральные вирусы

Содержание
  1. Вирусы — живые существа или мёртвая материя? | Вирусы и эпидемии | Багира Гуру
  2. Убийственные карлики
  3. Они зародились в космосе?
  4. Недостающее звено эволюции?
  5. Доклеточная форма жизни
  6. Популярное
  7. Вход
  8. Что такое вирусы? Биология: виды и классификация вирусов
  9. Общие характеристики
  10. Происхождение
  11. Вирусы как форма жизни
  12. Классификация вирусов по Балтимору
  13. Жизненный период
  14. Заболевания человека
  15. Эпидемии
  16. Защита организма
  17. Лечение и профилактика
  18. Вирусы растений
  19. Искусственные вирусы
  20. Вирусы – это оружие
  21. Вирусы и биосфера
  22. Вирусы
  23. Взаимодействие вируса с клеткой
  24. Бактериофаги (“бактерия” + греч. phag(os) — пожирающий)
  25. Вирусные инфекции
  26. Вирусы, что это такое? Виды, устройство, формы, размножение
  27. Строение вирусов
  28. Формы вирусов
  29. Проникновение вирусов в клетку-хозяина
  30. Размножение вирусов
  31. Вироиды
  32. Бактериофаги
  33. Характеристика бактериофагов
  34. Вирулентные и умеренные фаги
  35. Фаговая терапия
  36. Механизмы развития вирусной инфекции
  37. Гуморальный и клеточный противовирусный иммунитет
  38. Интерфероны

Вирусы — живые существа или мёртвая материя? | Вирусы и эпидемии | Багира Гуру

Интегральные вирусы

Споры биологов о том, что такое вирусы, живые это существа или мёртвое вещество, идут до сих пор. Энциклопедические словари откровенно признают: в настоящее время наука не понимает природу этих созданий, не знает, как и откуда они появились.

Учёные пока сходятся на том, что вирусы — это особая форма материи. Считать их живыми как будто позволяет то, что в них содержатся органические молекулы, что у них есть свой геном и они могут размножаться. Однако жить и размножаться они способны только внутри чужого организма, чужой клетки.

Вне её это просто мёртвые инертные кристаллы, кучки молекул.

Убийственные карлики

Сегодня открыто около двух тысяч видов вирусов. Предполагается, что это лишь очень небольшая их часть. Вирусы постоянно мутируют, откуда-то возникают новые разновидности, иногда вызывающие смертельно опасные болезни типа коровьего бешенства, птичьего гриппа, лихорадки Эбола, СПИДа и других.

Эти безжалостные убийцы клеток кажутся настолько чуждыми всему земному, что многие изучающие их исследователи вполне серьёзно утверждают: вирусы явились на Землю из дальнего космоса. Действия их и правда похожи на эпизоды из фильмов ужасов о нападении представителей внеземной цивилизации.

Чудовищного вида карлик впивается в гигантскую, ничего не подозревающую клетку, растворяет её оболочку и ввинчивает в неё «пружину» своего ДНК. Эта «пружина» задаёт клетке собственную программу, изменяя тем самым всю её работу.

Несчастная поражённая клетка забывает о своих исконных обязанностях и начинает штамповать с полученной матрицы все новые и новые вирусы, несущие смерть соседним клеткам.

Представители одной из разновидностей вирусов — бактериофаги (пожиратели бактерий) — даже внешне похожи на космический модуль, созданный для высадки на чужую планету с целью взятия проб грунта. Бактериофаг выпускает своеобразные «стойки опоры», которыми намертво прикрепляется к жертве, а затем вонзает в неё свой бур.

Пища вирусам не нужна. Они не потребляют и не усваивают её. Как признают учёные, по своему устройству вирусы больше похожи на примитивные механизмы, которые преследуют одну-единственную цель: искать живые клетки и встраиваться в них. Но кем, когда и для чего поставлена перед ними такая задача? Специалисты не решаются даже задуматься над этим вопросом.

Они зародились в космосе?

В 2008 году доктор геолого-минералогических наук Станислав Жмур предложил собственную гипотезу возникновения жизни на Земле. По его мнению, основным предком всего живого были не клетки и даже не бактерии, а вирусы, которые зародились в околосолнечном пространстве около пяти миллиардов лет назад.

После вспышки некоей сверхновой звезды были выброшены в пространство огромные массы звёздного вещества, из которого впоследствии сформировалось газопылевое облако, а из него потом — планеты Солнечной системы.

Высокая температура этого вещества способствовала образованию в нём цианидов — химических элементов, представляющих собой основу для создания простейших углеводородов. Следующий этап состоял в появлении на основе углеводородов белков-ферментов и белков-пептидов, которые затем привели к синтезу молекул нуклеиновых кислот.

А это в свою очередь позволило образоваться РНК и ДНК, «создавшим» для своей защиты от вредных внешних воздействий пептидную оболочку. Так возникла структура, представляющая собой не что иное, как знакомый нам вирус.

Получается, что пять миллиардов лет назад газопылевое облако будущей Солнечной системы было не просто мёртвой материей, а субстанцией, насыщенной простейшими вирусами (вспомним о следах микроорганизмов в лунном грунте и метеоритах возрастом четыре с половиной миллиарда лет!).

Впоследствии из неё сформировались Земля и другие планеты, в которых зародыши жизни в виде вирусов уже изначально содержались. Дальнейшая эволюция вирусов на Земле шла благодаря воде, которая проникала в них сквозь пептидную оболочку. Некоторые виды вирусов разбухали, у них формировалась протоплазма, усложнялся их генетический аппарат.

Всё это привело к делению и, в конечном счёте, к появлению полноценной клетки-бактерии, положившей начало жизни на планете. Станислав Жмур не исключает возможности и более древнего происхождения вирусов. Они были способны возникнуть в веществе, образовавшемся сразу после Большого взрыва. А значит, возраст этих микроскопических созданий почти равен возрасту Вселенной. То есть, получается, в космосе повсюду разлита единая живая субстанция, способная породить жизнь на любом подходящем для неё небесном теле.

Некоторые исследователи идут ещё дальше, полагая, что вирусы — это искусственно созданные кем-то биороботы, которые миллиарды лет назад попали на Землю вместе с органическими зародышами. Цель вирусов-биороботов заключалась в обслуживании этих зародышей.

Российский учёный Михаил Дарьяненко считает, что вирусы-биороботы призваны были обеспечивать необходимый ход эволюции, соединяясь в определённой последовательности с клетками живых организмов и вводя в них нужные программы ДНК. Но за миллионы лет их деятельности что-то дало сбой, и вирусы из слуг клеток превратились в их убийц.

Не исключено, что вирусы-биороботы решили: жизнь на Земле пошла не по тому сценарию, который предписывается ей программой. И эксперимент надо свернуть, очистив планету для новых опытов.

Недостающее звено эволюции?

Вопрос о происхождении вирусов, с точки зрения большинства учёных, всё же не является первостепенным. Главное — понять, что же такое вирусы, как с ними сосуществовать, как бороться. Исследователи узнали о вирусах относительно недавно — всего 100 лет назад, а реально работать с ними научились лишь в середине минувшего века.

Ещё не так давно биологи полагали, что нашли, наконец, закономерности в строении вирусов и механизме их действия. Но спокойствие закончилось в 1992 году, когда в амёбе, выловленной в воде одного промышленного резервуара в Англии, обнаружили удивительный, ни на что не похожий объект. Диаметром он крупнее известных вирусов в 40 раз, но бактерией не является.

Биологи признали его вирусом, назвав «мими» — из-за его мимикрии, или маскировки под бактерию.

Поразительные результаты дала расшифровка его генома. В вирусе «мими» обнаружено 1260 генов, в то время как в обычных, традиционных вирусах их не более 100! Ещё одна странность: в «мими» находятся одновременно и ДНК, и РНК. В обычных вирусах — либо ДНК, либо РНК. Обе молекулы вместе в вирусах не встречаются.

«Мими» способен воспроизводить 150 видов белков и даже ремонтировать свою повреждённую ДНК, что для обычных вирусов совершенно невозможно. И всё-таки «мими» — паразит. Он живёт и размножается только за счёт чужой клетки, в которую внедряется.

Тогда что это такое? Может быть, некая промежуточная форма между вирусами и бактериями, которая способна пролить свет на загадки эволюции?

Доклеточная форма жизни

Человеку примерно два миллиона лет. Возраст вирусов, по всем прикидкам, исчисляется миллиардами лет. Причём существовать в «законсервированном» состоянии они могут бесконечно долго. По сути вирусы бессмертны. Расшифровка нашего генома показала, что в нём полно остатков древних вирусов.

Они занимают почти 10 процентов генома человека. Для чего эти остатки там присутствуют — пока неизвестно. Подобные вопросы наука стала обсуждать только в самые последние годы. Сейчас среди учёных всё больше распространяется мнение, что вирусы — это реликты неких доклеточных форм жизни.

За миллионы лет эволюции они приспособились к паразитическому существованию в чужих клетках. Также выяснилось, что не все вирусы убивают клетки.

Иными словами — они не все смертельно опасны, как это представляется многим, иначе человечество, да и вообще вся жизнь на Земле, вряд ли могли бы существовать.

«Человеческая цивилизация за свою историю знавала такие болезни, вызванные вирусами, которые уносили миллионы жизней, — говорит Роберт Шоуп, директор Йельской вирусной лаборатории.

— Иногда казалось, что человечество стоит на грани полного уничтожения. Но каждый раз всё обходилось более или менее благополучно. Вирусы отступали.

Случайно ли это? Или так было запрограммировано с самого начала, с момента появления жизни на Земле?».

Журнал: Тайны 20-го века №47, ноябрь 2019 года Рубрика: Невероятные гипотезы

Игорь Волознев

жизнь, Тайны 20 века, болезнь, мутация, ДНК, вирусы, эпидемия, геном, пандемия

Популярное

  • Чума в Европе — история болезни
  • Сифилис — история болезни

Вход

Источник: https://www.bagira.guru/viruses/virusy-zhivye-sushchestva-ili-mjortvaya-materiya.html

Что такое вирусы? Биология: виды и классификация вирусов

Интегральные вирусы

Вирусы (биология расшифровывает значение этого термина так) – внеклеточные агенты, которые могут воспроизводиться только с помощью живых клеток. Причем они способны поражать не только людей, растения и животных, но также и бактерии. Вирусы бактерий принято называть бактериофагами. Не столь давно были обнаружены виды, которые поражают друг друга. Они называются «вирусы-сателлиты».

Общие характеристики

Вирусы являются очень многочисленной биологической формой, так как существуют в каждой экосистеме на планете Земля. Их изучением занимается такая наука, как вирусология – раздел микробиологии.

Каждая вирусная частица имеет несколько компонентов:

– генетические данные (РНК или ДНК);

– капсид (белковая оболочка) – выполняет защитную функцию;

Вирусы имеют достаточно разнообразную форму, начиная от самой простой спиральной и заканчивая икосаэдрической. Стандартные размеры составляют около одной сотой размера небольшой бактерии. Однако большая часть экземпляров такие маленькие, что их даже не видно под световым микроскопом.

По своей природе вирусы являются паразитами и не могут размножаться за пределами живой клетки. А вот находясь вне клетки, перестают проявлять живые признаки.

Распространяются несколькими способами: вирусы, живущие в растениях, перемещаются с помощью насекомых, питающихся травяными соками; животные вирусы переносят кровососущие насекомые. У людей вирусы передаются большим количеством способов: воздушно-капельным или половым путем, а также посредством переливания крови.

Происхождение

Вирусы (биология насчитывает огромное количество видов) имеют несколько гипотез происхождения. Данные паразиты были обнаружены на каждом миллиметре планеты, где есть живые клетки. Поэтому и существуют с самого начала появления жизни.

В наше время существуют три гипотезы происхождения вирусов.

  1. Гипотеза клеточного происхождения сообщает о том, что внеклеточные агенты появились из фрагментов РНК и ДКН, которые смогли высвободиться от организма большего размера.
  2. Регрессивная гипотеза показывает, что вирусы были мелкими клетками, ведущими паразитический образ жизни в более крупных видах, но со временем утратили гены, которые нужны для паразитического существования.
  3. Гипотеза коэволюции предполагает, что вирусы возникли в то же время, в которое появились живые клетки, то есть уже миллиарды лет назад. И появились в результате построения сложных комплексов нуклеиновых кислот и белков.

Кратко о вирусах (по биологии этих организмов база знаний наша, к сожалению, далека от совершенства) вы можете прочитать в данной статье. Каждая из перечисленных выше теорий имеет свои минусы и недоказанные гипотезы.

Вирусы как форма жизни

Существует два определения формы жизни вирусов. Согласно первому, внеклеточные агенты – это комплекс органических молекул. Второе определение сообщает о том, что вирусы являются особой формой жизни.

Вирусы (биология подразумевает появление многих новых видов вирусов) характеризуются как организмы на границе живого.

Они похожи на живые клетки тем, что имеют свой неповторимый набор генов и эволюционируют исходя из метода естественного отбора. Также они могут размножаться, создавая при этом собственные копии.

Так как вирусы не имеют клеточного строения, ученые не рассматривают их как живую материю.

Для того чтобы синтезировать собственные молекулы, внеклеточным агентам нужна клетка-хозяин. Отсутствие собственного обмена веществ не позволяет им размножаться без посторонней помощи.

Однако в 2013 году была опубликована научная статья о том, что у некоторых бактериофагов есть собственная иммунная система, способная к адаптации. А это лишнее доказательство того, что вирусы – это форма жизни.

Классификация вирусов по Балтимору

Какие бывают вирусы, биология описывает достаточно детально. Дейвид Балтимор (лауреат Нобелевской премии) разработал свою классификацию вирусов, которая до сих пор пользуется успехом. Данная классификация основывается на способах образования мРНК.

Вирусы должны образовывать мРНК из собственных геномов. Этот процесс необходим для репликации собственной нуклеиновой кислоты и образования белков.

Классификация вирусов (биология учитывает их происхождение), согласно Балтимору, выглядит следующим образом:

– Вирусы с двуцепочной ДНК без РНК стадии. К таким относятся мимивирусы и герпевирусы.

– Одноцепочная ДНК с положительной полярностью (парвовирусы).

– Двучепочная РНК (ротавирусы).

– Одноцепочная РНК положительной полярности. Представители: флавивирусы, пикорнавирусы.

– Одноцепочная молекула РНК двойной или негативной полярности. Примеры: филовирусы, ортомиксовирусы.

– Одноцепочная положительная РНК, а также наличие синтеза ДНК на матрице РНК (ВИЧ).

– Двуцепочная ДНК, и наличие синтеза ДНК на матрице РНК (гепатит В).

Жизненный период

Примеры вирусов в биологии встречаются едва ли не на каждом шагу. Но у всех жизненный цикл протекает практически одинаково. Не имея клеточного строения, размножаться методом деления они не могут. Поэтому и используют материалы, находящиеся внутри клетки своего хозяина. Таким образом, они воспроизводят большое количество копий самих себя.

Цикл вируса состоит из нескольких этапов, которые являются взаимоперекрывающимися.

На первом этапе вирус прикрепляется, то есть образовывает специфическую связь между своими белками и рецепторами клетки-хозяина. Далее нужно проникнуть в саму клетку и передать ей свой генетический материал. Некоторые виды переносят еще и белки. После этого происходит потеря капсида, и геномная нуклеиновая кислота высвобождается.

После того как паразит попадает внутрь клетки, начинается сборка вирусных частиц и модификация белка. И в итоге вирус выходит из клетки. Даже если он продолжает активно развиваться, то может и не убивать клетку, а продолжать в ней жить.

Заболевания человека

Вирусы биология интерпретирует как низшее проявление жизни на планете Земля. Одним из самых простых вирусных заболеваний человека является простуда. Однако данные паразиты могут вызывать и очень серьезные заболевания, такие как СПИД или птичий грипп.

Каждый вирус имеет определенный механизм действия на своего хозяина. Этот процесс включает лизис клеток, который приводит к их смерти. У многоклеточных организмов при отмирании большого количества клеток начинает плохо функционировать весь организм.

Во многих случаях вирусы могут и не наносить вреда человеческому здоровью. В медицине это называется латентностью. Примером такого вируса является герпес. Некоторые латентные виды способны приносить пользу.

Порой их присутствие вызывает иммунный ответ против бактериальных патогенов.

Некоторые инфекции могут быть хроническими или пожизненными. То есть вирус развивается, несмотря на защитные функции организма.

Эпидемии

Вирусная эпидемиология – это наука, которая изучает, как контролировать передачу вирусных инфекций среди людей. Передача паразитов может быть горизонтальной, то есть от человека к человеку; или вертикальной – от матери к ребенку.

Горизонтальная передача является самым распространённым типом распространения вируса среди человечества.

Скорость передачи вируса зависит от нескольких факторов: плотности популяции, количества людей с плохим иммунитетом, а также от качества медицины и погодных условий.

Защита организма

Виды вирусов в биологии, которые могут повлиять на человеческое здоровье, неисчислимые. Самой первой защитной реакцией является врожденный иммунитет. Его составляют специальные механизмы, которые дают неспецифическую защиту. Такой вид иммунитета не способен обеспечить надежную и долгую защиту.

Когда у позвоночных появляется приобретенный иммунитет, то вырабатываются специальные антитела, которые присоединяются к вирусу и делают его безопасным.

Однако далеко не против всех существующих вирусов образуется приобретенный иммунитет. Например, ВИЧ постоянно меняет аминокислотную последовательность, поэтому уходит от иммунной системы.

Лечение и профилактика

Вирусы в биологии – это очень распространенное явление, поэтому ученые вывели специальные вакцины, содержащие «убийственные вещества» для самих вирусов. Самой распространенным и действенным методом борьбы является вакцинация, которая создает иммунитет к инфекциям, а также противовирусные препараты, которые способны избирательно ингибировать репликацию вирусов.

Вирусы и бактерии биология описывает в основном как вредоносных обитателей человеческого организма. В настоящее время с помощью вакцинации можно побороть более тридцати вирусов, поселившихся в теле человека, и еще больше – в организме животных.

Меры профилактики против вирусных заболеваний следует проводить вовремя и качественно. Для этого человечество должно вести здоровый образ жизни и стараться всеми возможными способами повысить иммунитет. Государство же должно вовремя устраивать карантины и обеспечивать хорошее медицинское обслуживание.

Вирусы растений

Формы вирусов биология рассматривает чаще всего округлые и палочковидные. Таких паразитов достаточно большое количество.

В хозяйстве они в основном влияют на урожайность, но избавляться от них экономически невыгодно. От растения к растению такие вирусы распространяются с помощью насекомых-переносчиков.

Такие виды не поражают человека или животных, так как могут размножаться только в растительных клетках.

Зеленые друзья нашей планеты тоже могут от них защищаться с помощью механизма гена устойчивости.

Очень часто растения, пораженные вирусом, начинают вырабатывать такие противовирусные вещества, как салициловая кислота или оксид азота.

Молекулярная биология вирусов занимается решением проблем поражения плодородных растений паразитами, а также изменяет их химически и генетически, что способствует дальнейшему развитию биотехнологий.

Искусственные вирусы

Виды вирусов в биологии многочисленны. Особенно нужно учитывать то, что ученые научились создавать искусственных паразитов. Первый искусственный вид был получен в 2002 году.

У большинства внеклеточных агентов искусственный ген, введенный в клетку, начинает проявлять инфекционные качества. То есть в них содержится вся информация, которая нужна для образования новых видов.

Данная технология широко применяется для получения антиинфекционных вакцин.

Возможность создавать вирусы в искусственных условиях может иметь много последствий. Вирус не может полностью вымереть до тех пор, пока имеются чувствительные к нему тела.

Вирусы – это оружие

К сожалению, инфекционные паразиты могут создавать опустошительные эпидемии, поэтому могут использоваться как биологическое оружие. Подтверждением этого является испанский грипп, который был создан в лабораторных условиях.

Другим примером является оспа.

Вакцина от нее уже найдена, но, как правило, вакцинацию проходят только медицинские работники и военнослужащие, это означает, что остальное население находится в зоне потенциального риска, если этот вид биологического оружия будет применен на практике.

Вирусы и биосфера

На данный момент внеклеточные агенты могут “похвастаться” наибольшим количеством особей и видов, проживающих на планете Земля.

Они выполняют важную функцию, регулируя численность популяций живых организмов. Очень часто они образовывают с животными симбиоз. Например, яд некоторых ос содержит компоненты вирусного происхождения.

Однако их главной ролью в существовании биосферы является жизнь в море и океане.

В одной чайной ложке морской соли содержится приблизительно миллион вирусов. Их основной целью является регуляция жизни в водных экосистемах. Большая их часть абсолютно безвредны для флоры и фауны

Но это далеко не все положительные качества. Вирусы регулируют процесс фотосинтеза, поэтому увеличивают процентное содержание кислорода в атмосфере.

Источник: https://FB.ru/article/220616/chto-takoe-virusyi-biologiya-vidyi-i-klassifikatsiya-virusov

Вирусы

Интегральные вирусы

Вирус (лат. virus – яд) – неклеточная форма жизни, мельчайшие болезнетворные микроорганизмы, не видимые в микроскоп. Они значительно меньше бактерий: легко проходят через бактериальные фильтры.

Вирусы способны размножаться только внутри живых клеток, до проникновения в них вирусы не имеют признаков жизни: пассивно перемещаются во внешней среде, ожидая встречи с клеткой-мишенью.

В 1892 году Ивановский Д.И. в ходе изучения мозаичной болезни табака обнаружил, что болезнь вызывается мельчайшими субстанциями, которые проходят через бактериальный фильтр, то есть были меньше бактерий. Вирусы впервые увидели в электронный микроскоп в 1939 году (спустя 19 лет со смерти Ивановского), однако считается, что именно Ивановский положил начало вирусологии как науке.

Вирусы выделяют в отдельное, пятое царство. Несмотря на их кажущуюся безжизненность, от неживой материи их отличают следующие черты:

  • Наличие наследственности и изменчивости
  • Способность к репродукции (воспроизведению себе подобных)

Рекомендую обратить особое внимание на черты, которые отличают вирусы от живых организмов:

  • Неживое (инертное) состояние
  • Вне клетки хозяина находятся в неживом состоянии, ожидая внедрения. Вирусы – облигатные внутриклеточные паразиты.

  • Обмен веществ
  • У вирусов отсутствует обмен веществ с внешней средой (метаболизм).

  • Неклеточное строение
  • Не имеют клеточной мембраны, ограничивающих их от внешней среды, и, соответственно, клеточного строения.

  • Не делятся, не размножаются половым путем
  • У вирусов отсутствует половое размножение и деление. Попав в живую клетку, вирус встраивает свою нуклеиновую кислоту (РНК/ДНК) в наследственный материал клетки-мишени. В результате клетка начинает синтезировать вирусные белки (новые вирусы): так увеличивается численность вирусов.

  • Не растут
  • Вирусы не растут, не увеличиваются в размерах. Стратегия их жизни – безудержное размножение.

Если мы заглянем в клетку, инфицированную вирусом, то от вируса мы увидим только один элемент – его нуклеиновую кислоту (ДНК/РНК). Во внешней среде вирусы существуют в виде вирионов – полностью сформированных вирусных частиц, состоящих из белковой оболочки (капсида) и нуклеиновой кислоты внутри.

Носителем наследственной информации у вирусов может быть ДНК, РНК. В связи с этим все вирусы подразделяются на ДНК- и РНК-содержащие.

Взаимодействие вируса с клеткой

Найдя клетку, на поверхности которой есть подходящий рецептор, вирус взаимодействует с ним и прикрепляется к мембране клетки. Путем эндоцитоза (образование вакуоли) вирус проникает внутрь клетки, выходит из вакуоли в цитоплазму. Наследственный материал (ДНК/РНК) вируса реализуется по схеме: ДНК ↔ РНК → белок.

Проникнув внутрь клетки (инфицировав ее), вирус реализует собственный генетический материал (ДНК/РНК) путем синтеза вирусного белка на рибосомах клетки хозяина. Клетка даже и не подозревает, что вирус встроил в ее РНК/ДНК свой генетический код – она принимает его как свой собственный, а в результате синтезирует вирусные белки.

Образовавшиеся белки объединяются в вирусные частицы, которые могут выходить из клетки разными путями. Вирионы вирусов гепатита C выходят из клетки путем почкования (экзоцитозом), при таком варианте клетка долгое время остается живой и служит для продукции новых вирионов.

Известен и другой механизм выхода вирионов из клетки: взрывной, при котором оболочка клетки разрывается, и тысячи вирионов отправляются инфицировать новые клетки. Такой способ характерен для аденовирусов, ротавирусов.

Бактериофаги (“бактерия” + греч. phag(os) — пожирающий)

Это уникальная группа вирусов, инфицирующая только бактерии. Бактериофаг имеет капсид, с содержащимся внутри наследственным материалом – ДНК (реже РНК), протеиновым хвостом. Бактериофаги открыты в 1915 году и с тех пор активно применяются в ходе генетических исследований.

Ниже вы можете видеть типичное строение бактериофага. Бактериофаг напоминает шприц, который протыкает стенку бактерии и впрыскивает внутрь нее свою нуклеиновую кислоту.

Бактериофаги успешно применяются в медицине для лечения многих заболеваний. Это высокоэффективные, дорогостоящие препараты, которые помогают, например, нормализовать микрофлору кишечника при бактериальных инфекциях.

Вирусные инфекции

Вирусы вызывают множество заболеваний человека и животных. Некоторые из них неизлечимы даже на современном этапе развития медицины, например бешенство. К вирусным инфекциям относятся грипп, корь, свинка, СПИД (вызванный ВИЧ), полиомиелит, желтая лихорадка, онковирусы.

Такая группа, как онковирусы, потенцируют развитие опухолей в организме. К ВИЧ и онкогенным вирусам не существует специфических антител, что затрудняет процесс создания вакцины. В то же время против ряда вирусных инфекций: корь, ветряная оспа созданы вакцины, создающие стойкий пожизненный иммунитет.

Клетки вырабатывают защитный белок – интерферон. Это вещество подавляет синтез новых вирусных частиц, приводит к повышению температуры тела (например, при гриппе).

Вирус иммунодефицита человека (ВИЧ) представляет для организма большую опасность. Он размножается в T-лимфоцитах – клетках крови, которые выполняют иммунную функцию. С гибелью T-лимфоцитов разрушается иммунная система, становится невозможным сопротивление организма бактериями, вирусам и грибам, что в отсутствии лечения приводит к вторичным инфекциям.

Риск заражения ВИЧ присутствует при гемотрансфузии (переливании крови), половом акте. Инфекция также может быть передана от ВИЧ инфицированной матери к плоду.

Источник: https://studarium.ru/article/141

Вирусы, что это такое? Виды, устройство, формы, размножение

Интегральные вирусы

Вирусы — это микроскопические патогены, заражающие клетки живых организмов для самовоспроизводства.

Они состоят из одного вида нуклеиновой кислоты (или ДНК или РНК, но не обе вместе), которая защищена оболочкой, содержащей белки, липиды, углеводы или их комбинацию.

Размер типичного вируса варьируется от 15 до 350 нм, поэтому его можно увидеть только с помощью электронного микроскопа.

В 1892 году русский ученый Д.И. Ивановский впервые доказал существование ранее неизвестного типа возбудителя болезней, это был вирус мозаичной болезни табака.

А в 1898 году Фридрих Лоффлер и Пол Фрош нашли доказательства того, что причиной ящура у домашнего скота была инфекционная частица, которая меньше, чем любая бактерия.

Это были первые шаги к изучению природы вирусов, генетических образований, которые лежат где-то в серой зоне между живыми и неживыми состояниями материи. На текущий момент описано около 6 тыс. вирусов, но их существует несколько миллионов.

Строение вирусов

Вне клеток-хозяев вирусы существуют в виде белковой оболочки (капсида), иногда заключенного в белково-липидную мембрану. Капсид обволакивает собой либо ДНК, либо РНК, которая кодирует элементы вируса. Находясь в такой форме вне клетки, вирус метаболически инертен и называется вирионом.

Простая структура, отсутствие органелл и собственного метаболизма позволяет некоторым вирусам кристаллизоваться, т.е. они могут вести себя подобно химическим веществам.

С появлением электронных микроскопов было установлено, что их кристаллы состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц.

В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли.

Формы вирусов

Вирусы встречаются в трех основных формах. Они бывают:

  1. Сферическими (кубическими или полигидральными). Вирусы герпеса, типулы, полиомы и т.д.
  2. Спиральными (цилиндрическими или стержнеобразными). Вирусы табачной мозаики, гриппа, эпидемического паротита и др.
  3. Сложными. Например, бактериофаги.

Сфера, спираль и сложная ассиметричная формы вирусов (ПостНаука/)

Проникновение вирусов в клетку-хозяина

Капсид в основном защищает нуклеиновую кислоту от действия клеточного нуклеазного фермента.

Но некоторые белки капсида способствуют связыванию вируса с поверхностью клеток-хозяев, и работают, как ключики, вставляемые в нужные замочки.

Другие поверхностные белки действуют как ферменты, они растворяют поверхностный слой клетки-хозяина и таким образом помогают проникновению нуклеиновой кислоты вируса в клетку-хозяина.

Вирусные популяции используют механизмы и метаболизм клетки-хозяина, чтобы произвести множество своих копий, которые собираются в клетке, пока не «выжмут из нее все соки», а затем выходят из погибшей клетки. Это наиболее частый сценарий, но не единственный.

Жизненный цикл вирусов сильно отличается у разных видов, но существует шесть основных этапов жизненного цикла вирусов:

  1. Прикрепление
  2. Проникновение
  3. Сброс капсида («раздевание»)
  4. Репликация
  5. Сборка
  6. Выход из клетки

Присоединение к клетке-хозяину представляет собой специфическое связывание между вирусными капсидными белками и рецепторами на клеточной поверхности. Эта специфика определяет хозяина вируса.

Проникновение следует за прикреплением: вирионы проникают в клетку-хозяина через рецептор-опосредованный эндоцитоз или слияние мембран. Это часто называют вирусной записью.

Проникновение вирусов в клетку достигается за счет:

  • Образования пор
  • Слияния мембран
  • Ретракции пилуса
  • Выброса
  • Проницаемости
  • Механизмов эндоцитоза

Мембраны растительных и грибковых клеток отличаются от мембран животных клеток. Растения имеют жесткую клеточную стенку из целлюлозы, а грибы – из хитина, поэтому большинство вирусов могут проникать внутрь этих клеток только после травмы («пробивания») клеточной стенки.

Бактерии, как и растения, имеют прочные клеточные стенки, которые вирус должен разрушить, чтобы заразить клетку.

Учитывая, что бактериальные клеточные стенки намного тоньше стенок растительных клеток из-за их гораздо меньшего размера, некоторые вирусы выработали механизмы ввода своего генома в бактериальную клетку через клеточную стенку, оставляя вирусный капсид снаружи. У прокариот происходит слияние мембран, образование пор через прокалывающее устройство.

Размножение вирусов

После того, как вирусный геном освобождается от капсида, начинается его транскрипция или трансляция. Именно эта стадия вирусной репликации сильно различается между ДНК- и РНК-вирусами и вирусами с противоположной полярностью нуклеиновой кислоты. Этот процесс завершается синтезом новых вирусных белков и генома (точных копий внедрённых).

Механизм репликации зависит от вирусного генома.

  • ДНК-вирусы обычно используют белки и ферменты клетки-хозяина для получения дополнительной ДНК, она транскрибируется в РНК-мессенджер (мРНК), которая затем используется для управления синтезом белка.
  • РНК-вирусы обычно используют ядро ​​РНК в качестве матрицы для синтеза вирусной геномной РНК и мРНК. Вирусная мРНК направляет клетку-хозяина на синтез вирусных ферментов и капсидных белков и сборку новых вирионов. Конечно, есть исключения из этого шаблона. Если клетка-хозяин не обеспечивает ферменты, необходимые для репликации вируса, вирусные гены предоставляют информацию для прямого синтеза отсутствующих белков.

Чтобы преобразовать РНК в ДНК, вирусы должны содержать гены, которые кодируют вирус-специфический фермент обратной транскриптазы. Она транскрибирует матрицу РНК в ДНК. Обратная транскрипция никогда не происходит в неинфицированных клетках. Необходимый фермент, обратная транскриптаза, происходит только от экспрессии вирусных генов в инфицированных клетках.

После того, как процесс репликации «поставлен на поток», готовые копии вируса отпочковываются и заражают другие клетки-хозяина. Другим вариантом выхода вируса из клетки является лизис. В этом случае клетка разрывается, высвобождая копии вируса.

Вироиды

Вироиды – это наименьшие из известных патогенов, они представляют собой голые круглые одноцепочечные молекулы РНК, которые не кодируют белок капсида, а реплицируются автономно при попадании в клетку растения-хозяина. Первый вироид был открыт в 1971 году, и он вызывает болезнь картофеля («веретенообразность» клубней). С тех пор было обнаружено 29 других вироидов длиной от 120 до 475 нуклеотидов.

Вироиды заражают только растения. Одни вызывают экономически важные заболевания сельскохозяйственных культур, в то время как другие являются доброкачественными. Двумя примерами экономически важных вироидов являются кокосный cadang-cadang (он вызывает массовую гибель кокосовых пальм) и вироид рубцовой кожицы яблок, который безнадежно портит товарный вид яблок.

30 известных вироидов были классифицированы в две семьи.

  • Члены семейства Pospiviroidae, названные по имени вироида клубневого веретена картофеля, имеют палочковидную вторичную структуру с небольшими одноцепочечными областями, имеет центральную консервативную область, и реплицируются в ядре клетки.
  • Avsunviroidae, названный в честь вироида авокадо, имеет как палочковидную, так и разветвленную области, но не имеет центральной консервативной области и реплицируется в хлоропластах растительной клетки.

В отличие от вирусов, которые являются паразитами механизма трансляции хозяина, вироиды являются паразитами клеточных транскрипционных белков.

Бактериофаги

Бактериофаги являются вирусами, которые заражают и используют для своего размножения бактерии. Эти вирусы были независимо обнаружены Фредериком У. Твортом в Великобритании (1915 г.) и Феликсом д’Эрелем во Франции (1917 г.). D’Hérelle ввел термин бактериофаг, означающий «пожиратель бактерий», чтобы описать бактерицидную способность открытого им инфекционного агента.

Характеристика бактериофагов

Существуют тысячи разновидностей фагов, каждый из которых может заразить только один тип или несколько близких типов бактерий или архей. Фаги классифицируются по ряду семейств вирусов; например:

  • Inoviridae
  • Microviridae
  • Rudiviridae
  • Tectiviridae и т.д.

Как и все вирусы, фаги являются простыми организмами, которые состоят из ядра генетического материала (нуклеиновой кислоты), окруженного капсидом белка. Нуклеиновая кислота может представлять собой либо ДНК, либо РНК, и может быть двухцепочечной или одноцепочечной.

Существует три основных структурных формы фага:

  1. Икосаэдрическая (20-сторонняя) головка с хвостом
  2. Икосаэдрическая головка без хвоста
  3. Нитевидная форма

Вирулентные и умеренные фаги

Во время заражения фаг прикрепляется к бактерии и вставляет в нее свой генетический материал. После этого фаг обычно следует одному из двух жизненных циклов: литическому (вирулентному) или лизогенному (умеренному).

Литические, или вирулентные, фаги захватывают механизм клетки, чтобы скопировать компоненты фага. Затем они разрушают или лизируют клетку, высвобождая новые частицы фага.

Лизогенные, или умеренные, фаги включают свою нуклеиновую кислоту в хромосому клетки-хозяина и реплицируются с ней как единое целое, не разрушая клетку. При определенных условиях лизогенные фаги могут индуцироваться в соответствии с литическим циклом.

Существуют и другие жизненные циклы, в т.ч. псевдолизогенез и хроническая инфекция.

При псевдолизогении бактериофаг проникает в клетку, но не использует механизм репликации клеток и не интегрируется в геном хозяина, просто как бы прячется внутри бактерии, не нанося ей никакого вреда.

Псевдолизогенез возникает, когда клетка-хозяин сталкивается с неблагоприятными условиями роста и, по-видимому, играет важную роль в выживании фага, обеспечивая сохранение генома фага до тех пор, пока условия роста хозяина снова не станут благоприятными.

При хронической инфекции новые фаговые частицы образуются непрерывно и длительно, но без явного уничтожения клеток.

Фаговая терапия

Вскоре после открытия фаги начали использовать для лечения бактериальных заболеваний человека, таких как бубонная чума и холера. Но фаговая терапия тогда не была успешной, и после открытия антибиотиков в 1940-х годах она была практически заброшена. Однако с появлением устойчивых к антибиотикам бактерий терапевтическому потенциалу фагов уделяется все больше внимания.

Наше время с антибиотиками заканчивается. В 2016 году женщина в штате Невада умерла от бактериальной инфекции, вызванной Klebsiella pneumoniae, которая была устойчивой ко всем известным антибиотикам. Бактерии, устойчивые к колистину, антибиотику последней инстанции, были обнаружены на свинофермах в Китае. В настоящее время бактерии приспосабливаются к антибиотикам быстрее, чем когда-либо.

Тем временем ученым требуется десять или более лет, чтобы разработать новый антибиотик и получить разрешение на его применение. В итоге мы проигрываем бактериям в этой «гонке вооружений».

Человечеству срочно нужен альтернативный метод борьбы с бактериальными инфекциями.

Одним из самых перспективных методов уничтожения бактерий является использование бактериофагов: вирусов, которые заражают и убивают бактерии.

Источник: https://sci-news.ru/2019/viruses/

Механизмы развития вирусной инфекции

Интегральные вирусы

На первом этапе инфекции вирусу противостоят неспецифические защитные механизмы. Физическую защиту обеспечивают ороговевающий эпителий кожи и секреты, омывающие поверхность слизистых.

После проникновения вируса внутрь клетки важную роль в обеспечении местного иммунитета играют интерфероны и другие цитокины, вырабатываемые зараженными клетками.

Вирусные белки, экспрессируемые на клеточной поверхности в комплексе с антигенами HLA, служат мишенью для несущих соответствующие рецепторы Т-лимфоцитов.

Гибель зараженных вирусом клеток сопровождается выделением цитокинов, медиаторов воспаления и антигенов, которые вызывают миграцию в очаг первичной инфекции лейкоцитов и развитие воспаления. Особое значение для сдерживания вирусной инфекции в первые дни после заражения имеют интерфероны и NK-лимфоциты. Гранулоциты и макрофаги обеспечивают фагоцитоз и разрушение вирусов, особенно после начала выработки антител.

Гуморальный и клеточный противовирусный иммунитет

К концу первой – началу второй недели после заражения наблюдается активация гуморального и клеточного иммунитета:

  • появляются антитела к вирусу
  • накапливаются специфичные к данному вирусу лимфоциты CD4 (Т-хелперы), ограниченные по HLA класса II, и лимфоциты CD8 (цитотоксические Т-лимфоциты), ограниченные по HLA класса I

Интенсивность иммунного ответа, от которой зависит скорость выздоровления, как правило, нарастает на протяжении второй и третьей недель после заражения. Кроме того, между второй и третьей неделями происходит переключение синтеза классов иммуноглобулинов (с IgM на IgG), и на поверхности слизистых появляются специфичные к данному вирусу IgA.

Антитела нейтрализуют вирусы, связываясь с их поверхностью и тем самым предотвращая адсорбцию вирусов на клеточной поверхности или их проникновение внутрь клетки. Нейтрализующая способность антител обычно усиливается в присутствии комплемента.

Выработка антител и накопление лимфоцитов CD4 и CD8 обычно продолжаются в течение нескольких месяцев после первичной вирусной инфекции, а небольшое количество клеток памяти надолго сохраняется в организме.

При повторном контакте с вирусом клетки памяти начинают быстро пролиферировать, обеспечивая быструю выработку антител и препятствуя заражению тем же вирусом.

Т-лимфоциты, вероятно, обеспечивают более кратковременную иммунологическую память, и поэтому вторичный клеточный иммунный ответ развивается медленнее, чем вторичный гуморальный ответ, особенно если между первичной инфекцией и повторным контактом с возбудителем прошло много лет.

https://www.youtube.com/watch?v=9QSYrU8qRCk

Некоторые вирусы содержат факторы, помогающие преодолеть защитные механизмы:

  • вирус-ассоциированные РНК аденовирусов препятствуют блокирующему действию интерферонов на синтез белка в зараженных клетках
  • белок Е1А аденовирусов препятствует активации транскрипции некоторых генов в ответ на интерфероны
  • белок ЕЗ аденовирусов предотвращает цитолиз, вызываемый FNO, и блокирует синтез HLA класса I в зараженной клетке
  • белок ICP47 вируса простого герпеса и белок US11 цитомегаловируса блокируют представление антигенов с помощью HLA класса I

Механизмы подавления действия интерферонов, NK-лимфоцитов и лимфоцитов CD8 появились у многих вирусов в процессе эволюции, что отражает важность этих факторов для борьбы с вирусной инфекцией, а также свидетельствует об избыточности защитных факторов организма. Даже при блокировании вирусами одного или нескольких защитных факторов организм подавляющего большинства людей с нормальным иммунитетом способен успешно бороться с инфекцией.

Накоплено много сведений о значении специфического иммунитета для защиты от вирусной инфекции. Недостаточность клеточного иммунитета часто проявляется тяжелой первичной или рецидивирующей инфекцией, вызванной герпесвирусами (ДНК-содержащие вирусы).

Устойчивость организма ко многим РНК-содержащим вирусам в значительной степени обусловлена антителами. Однако ослабление симптомов заболевания, вызванного герпесвирусами, на фоне лечения нормальными иммуноглобулинами говорит о важной роли антител в защите и от этой инфекции.

И наоборот, Т-лимфоциты – важный фактор защиты от РНК-содержащих вирусов, что подтверждается, в частности, наличием цитотоксических лимфоцитов CD8, несущих рецепторы к белку NP (нуклеопротеид) вируса гриппа.

Дефицит одного из защитных факторов, таких, как интерферон, NK-лимфоциты, В-лимфоциты или Т-лимфоциты, в большинстве случаев компенсируется другими.

Факторы, обусловливающие устойчивость к вирусным инфекциям, иногда оказывают повреждающее действие на органы и ткани, внося вклад в развитие патологических проявлений инфекции.

Воспалительная реакция, необходимая для эффективного подавления возбудителя в очагах инфекции, одновременно вызывает гибель клеток и участвует в патогенезе местных и общих симптомов болезни. Вирусная инфекция может приводить и к аутоиммунному поражению нервных или других клеток.

Предполагают, что такое действие отчасти обусловлено перекрестными реакциями между вирусными и клеточными антигенами.

Интерфероны

Все клетки человеческого организма в ответ на вирусную инфекцию способны вырабатывать интерфероны α или β. Мощным индуктором синтеза этих интерферонов является двухцепочечная РНК, поэтому РНК-содержащие вирусы активируют синтез сильнее, чем ДНК-содержащие.

Интерферон γ вырабатывается главным образом NK-лимфоцитами и Т-лимфоцитами под действием ИЛ-12. Интерфероны α и β связываются с рецепторами интерферона α, в то время как интерферон γ – с другими, но сходными рецепторами.

В последующей внутриклеточной передаче сигнала участвуют сопряженные с рецепторами Янус-киназы и факторы транскрипции STAT.

Янус-киназы фосфорилируют некоторые остатки тирозина факторов транскрипции, после чего активированные факторы транскрипции переносятся в ядро и индуцируют транскрипцию специфических клеточных генов.

Интерферон подавляет репродукцию вирусов, воздействуя на транскрипцию вирусных геномов тремя различными способами.

  • первый способ состоит в индукции синтеза 2',5'-олигоаденилатсинтетазы. В присутствии двухцепочечной РНК 2',5'-олигоаденилатсинтетаза полимеризует АТФ с образованием 2',5'-олигоаденилатов, которые в свою очередь активируют рибонуклеазу L, разрушающую одноцепочечные РНК
  • второй способ заключается в индукции синтеза протеинкиназы PKR. Эта протеинкиназа, которая также активируется двухцепочечной РНК, путем фосфорилирования блокирует фактор инициации трансляции eIF2α, что приводит к подавлению синтеза белка в зараженной клетке
  • В основе третьего способа лежит индукция синтеза белков Мх, обладающих ГТФазной активностью и имеющих особое значение для подавления репродукции вирусов гриппа и везикулярного стоматита

Источник: https://center-hc.ru/zabolevaniya-kotorie-mi-lechim/hronicheskie-infekcii/virusnie-infekcii/mehanizmi-razvitiya-virusnoy-infekcii

Ваш лекарь
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: